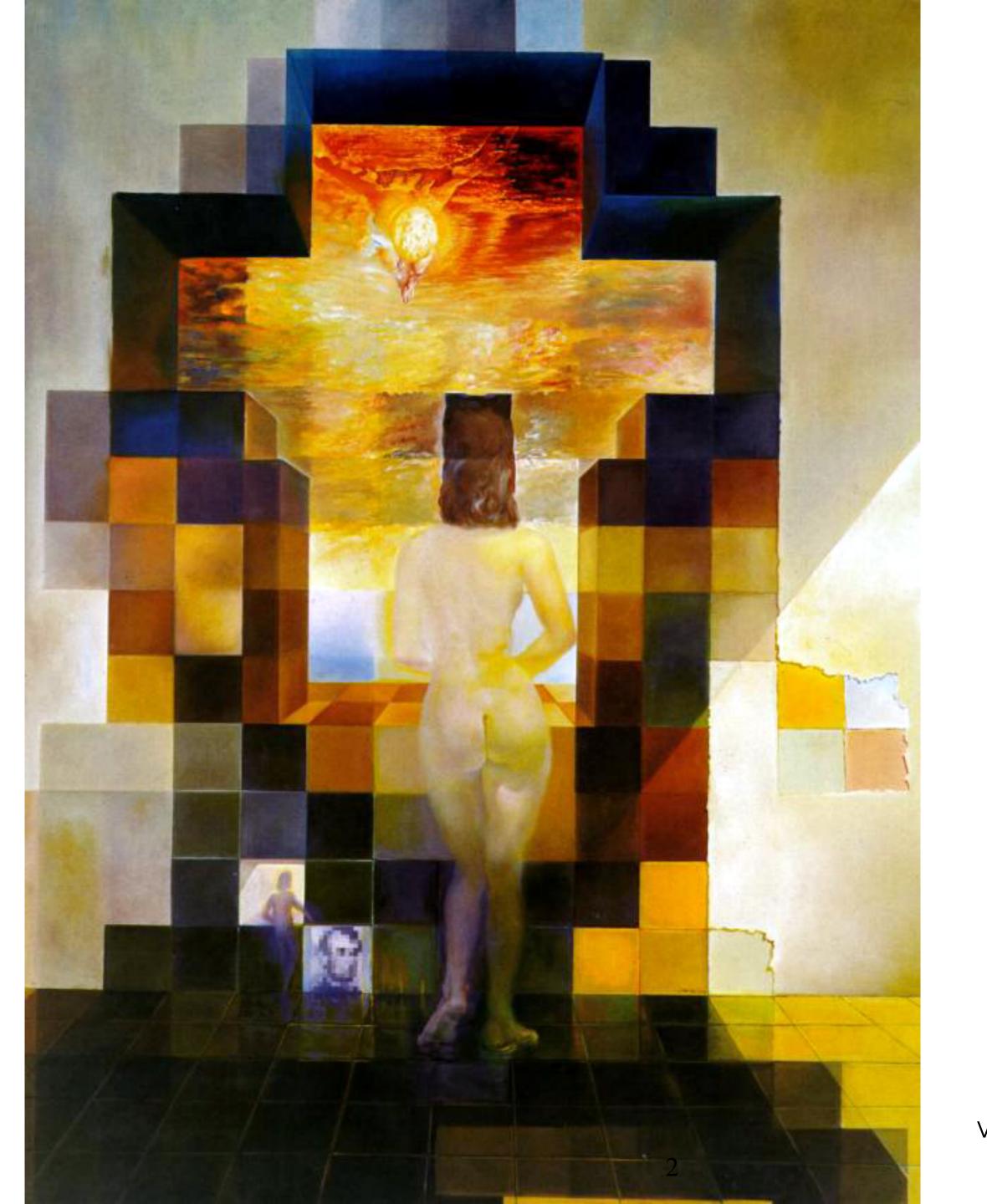
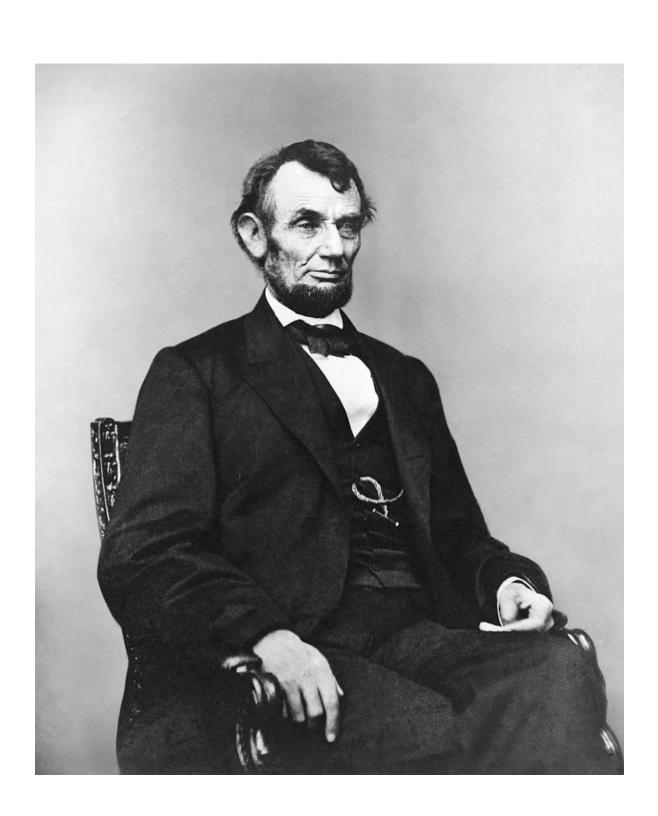


Filtrage dans le domaine spectral

GIF-4105/7105 Photographie Algorithmique Jean-François Lalonde

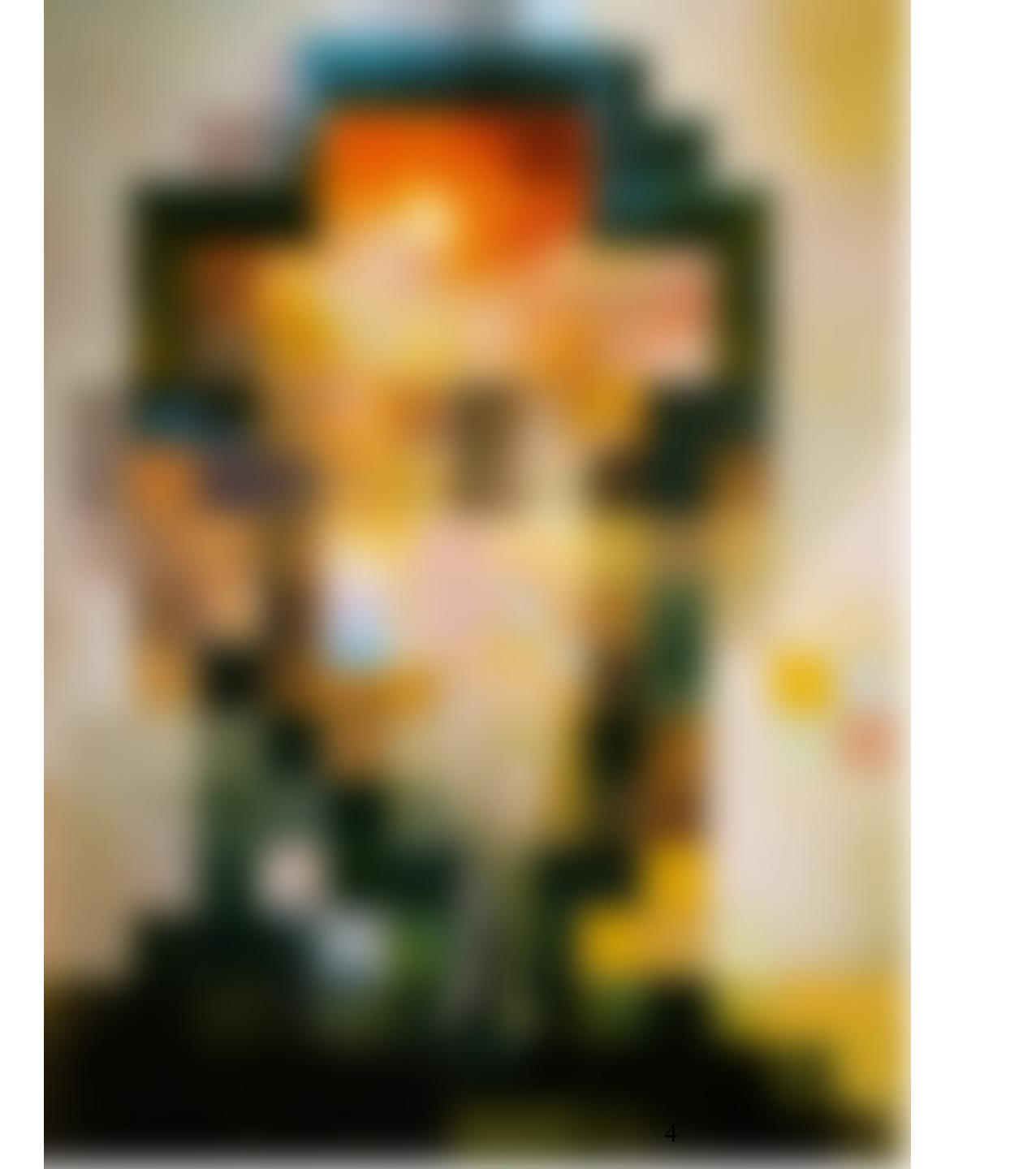


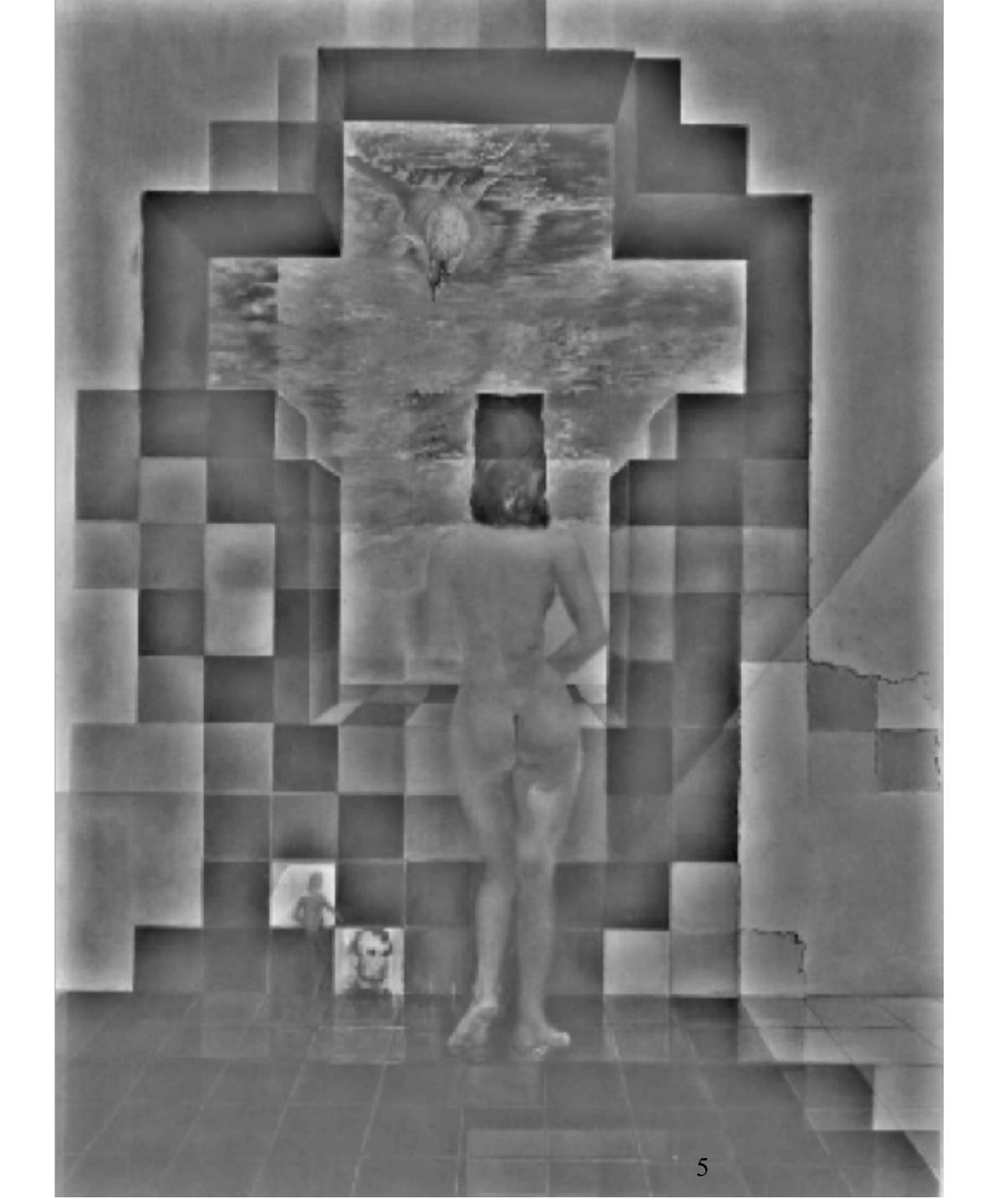
Salvador Dali « Gala contemplant la mer Méditerranée qui à vingt mètres devient le portrait d'Abraham Lincoln », 1976



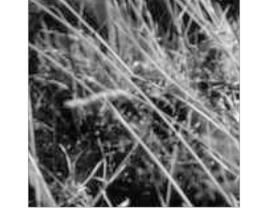
Salvador Dali « Gala contemplant la mer Méditerranée qui à vingt mètres devient le portrait d'Abraham Lincoln », 1976

3

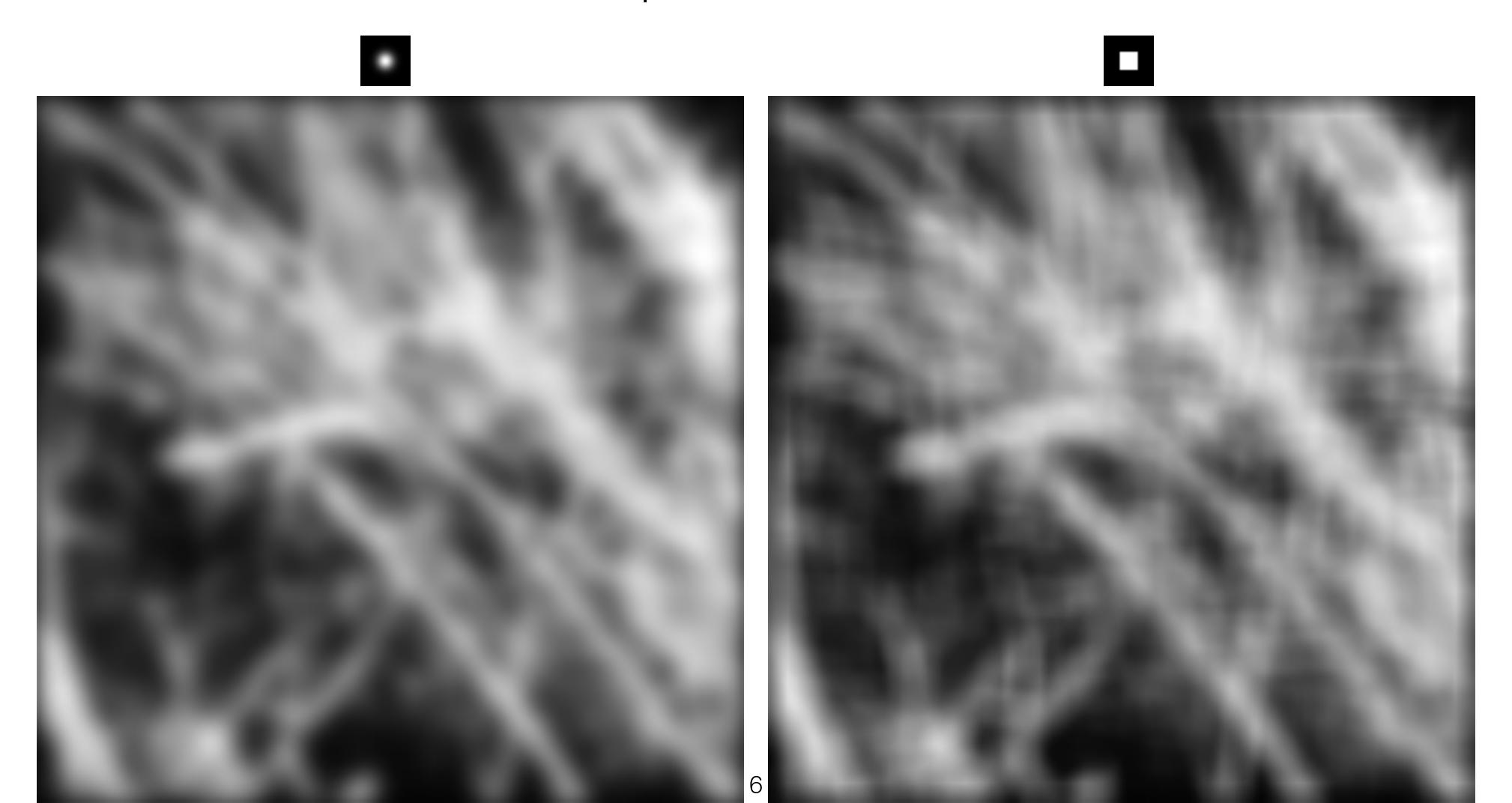




Comment une image peutelle contenir deux images?

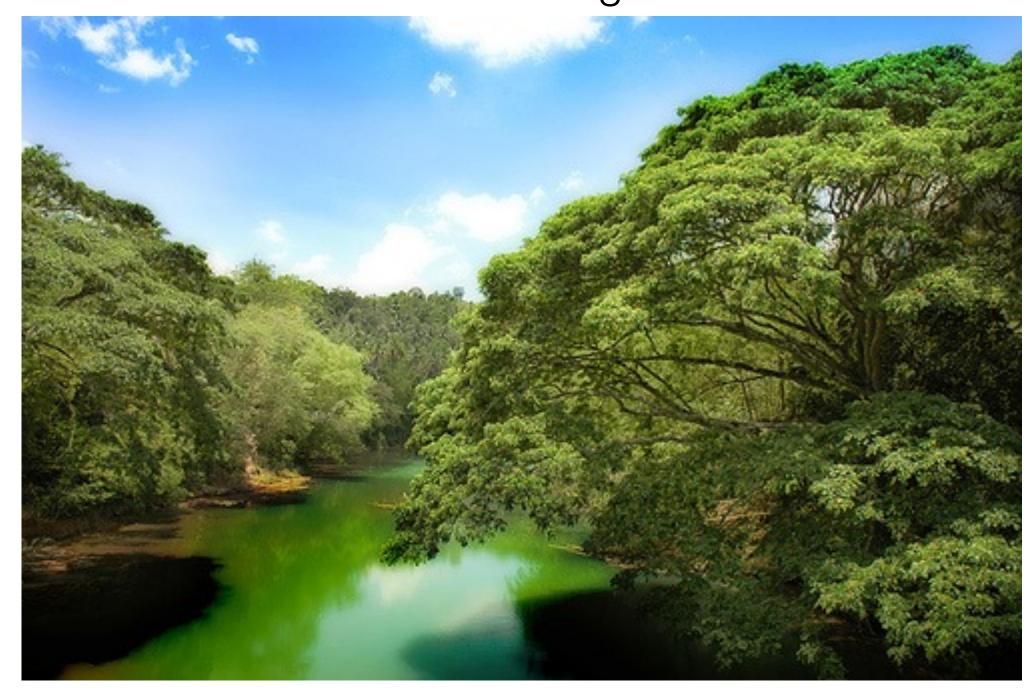


Pourquoi le filtre gaussien nous donne une image lisse, mais pas le filtre boîte?



Pourquoi peut-on toujours interpréter une image à plus faible résolution? Quelle est l'information perdue?

Résolution originale



1/2 résolution (4x moins de pixels!)

Jean Baptiste Joseph Fourier (1768-1830)

8

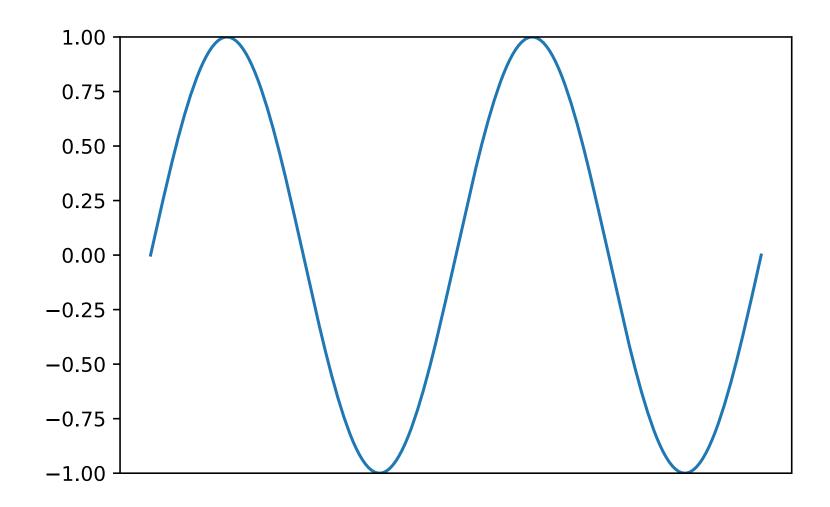
- a eu une idée révolutionnaire (1807):
 - Toute fonction peut être écrite comme une somme pondérée de sinus de différentes fréquences
- Vous n'y croyez pas?
 - Lagrange, Laplace, Legendre et autres non plus!
 - Pas traduit en anglais jusqu'à 1878!

Source: Efros

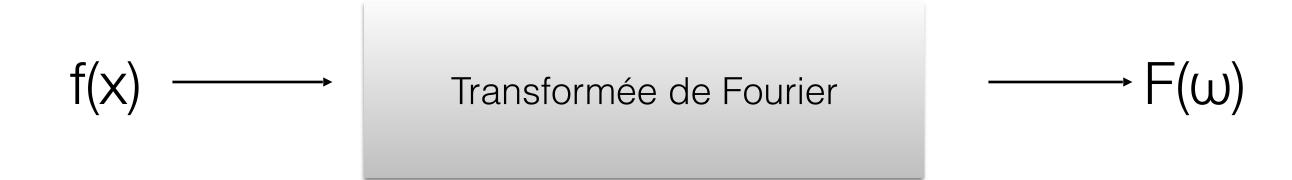
Toute fonction peut être écrite comme une somme pondérée de sinus de différentes fréquences (et phases)

Notre "unité" de base:

$$A\sin(\omega x + \phi)$$
 † † † amplitude fréquence phase



- Nous voulons comprendre les fréquences ω de notre signal.
 - Exprimons alors le signal avec ω au lieu de x:



- F(ω) représente la magnitude et la phase à chaque fréquence
 - Magnitude : « quantité » de signal à chaque fréquence
 - Phase: translation horizontale

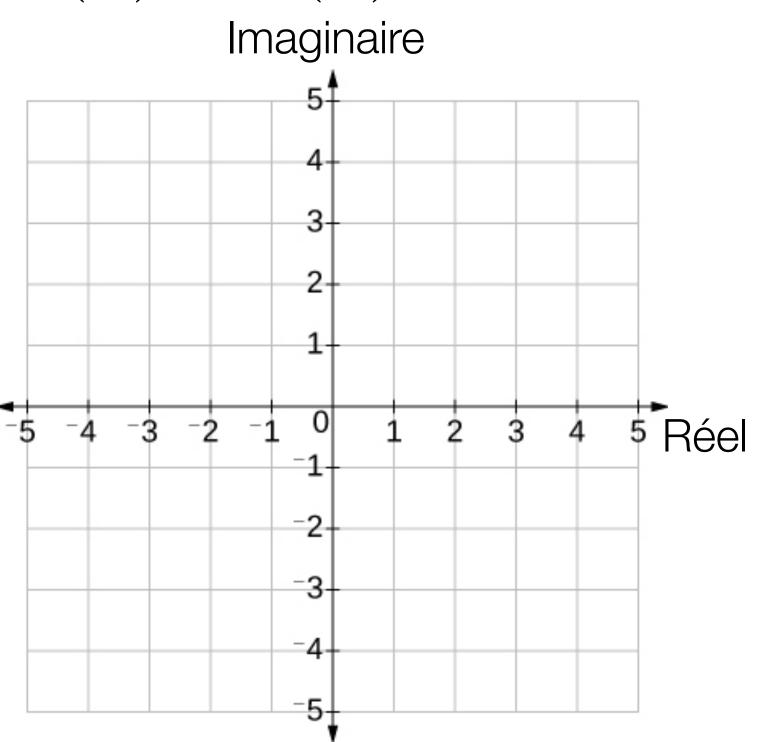
- F(ω) représente l'amplitude et la phase du signal
 - Comment faire pour représenter ces deux informations?
 - On utilise les nombres complexes $F(\omega) = R(\omega) + iI(\omega)$

$$F(\omega) = R(\omega) + iI(\omega)$$

Où l'amplitude est: $A=\pm\sqrt{R(\omega)^2+I(\omega)^2}$

Et la phase:

$$\Phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$



On définit une base complexe (formule d'Euler).

$$e^{-i\omega x} = \cos(\omega x) + i\sin(\omega x)$$

On multiplie le signal par la base complexe...

$$f(x)e^{-i\omega x}$$

... et on répète sur tout le domaine du signal.

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

La transformée de Fourier du signal f(x) est sa projection sur la base complexe.

Calculer la transformée de Fourier

Continue

$$H(\omega) = \int_{-\infty}^{\infty} h(x)e^{-j\omega x} dx$$

Discrète

$$H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j\frac{2\pi kx}{N}}$$

k = -N/2..N/2

(pour s'en souvenir)

Pour la calculer, on utilise l'algorithme « Fast Fourier Transform (FFT) » Complexité de la FFT : O(N log N)

Transformée de Fourier

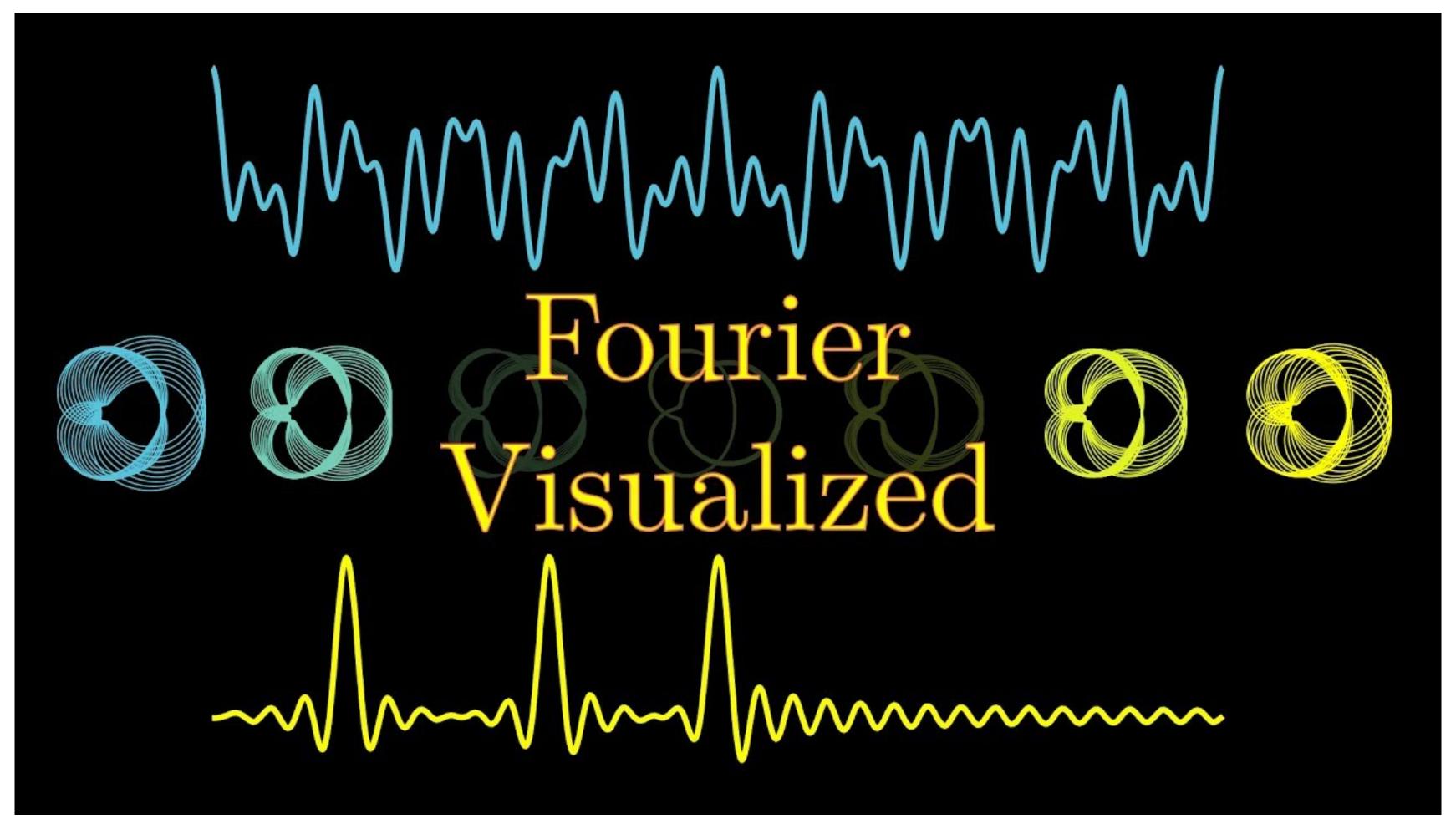
Directe

Inverse

$$F(\omega)$$
 — Transformée de Fourier Inverse — $f(x)$

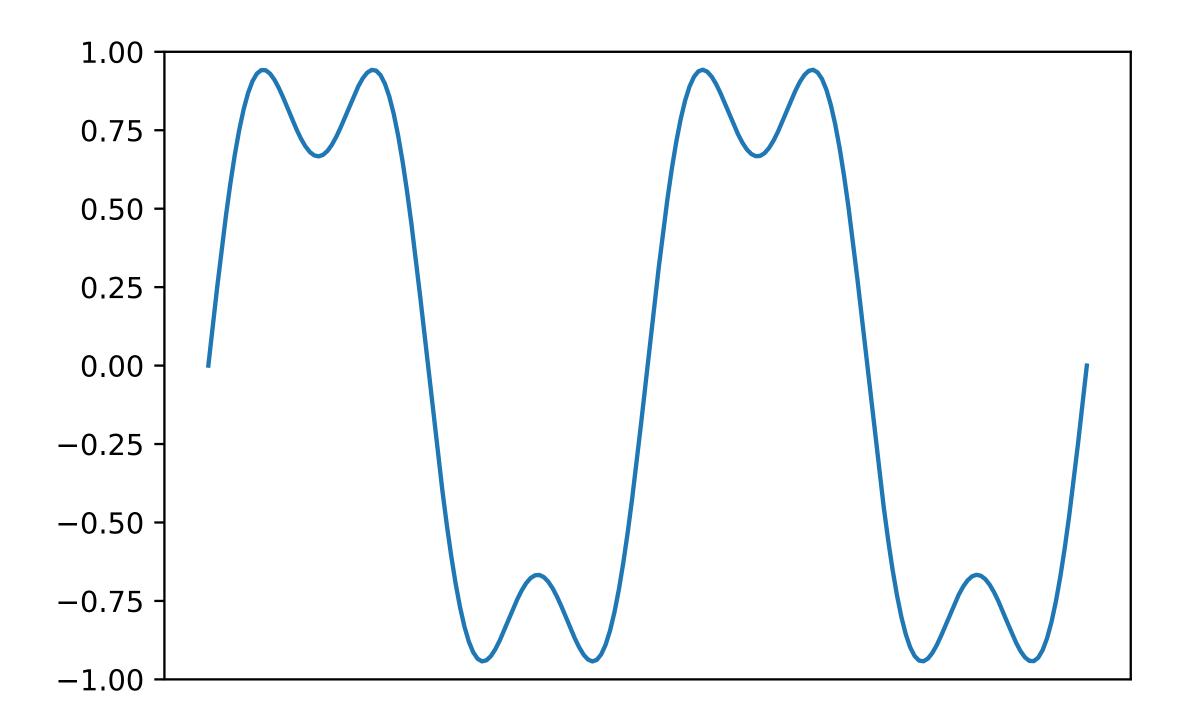
Autre explication super intuitive (3blue1brown)

https://www.youtube.com/watch?v=spUNpyF58BY

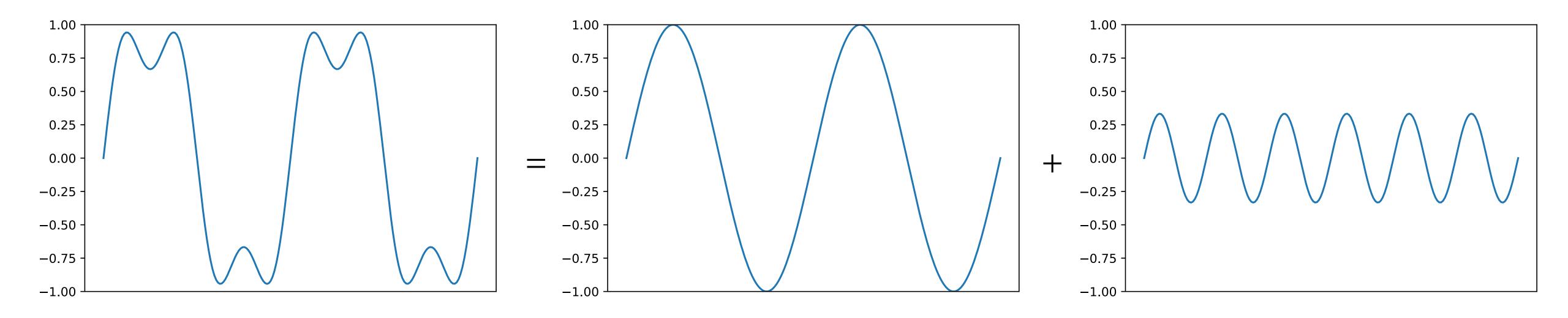


lci, on utilise t plutôt que x pour désigner la dimension spatiale

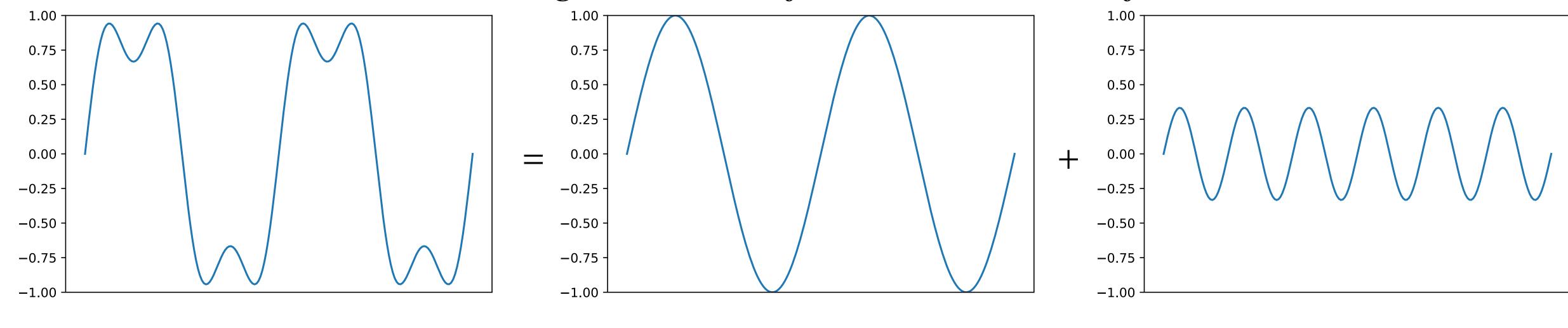
exemple: $g(t) = \sin(2\pi ft) + (1/3)\sin(2\pi(3f)t)$

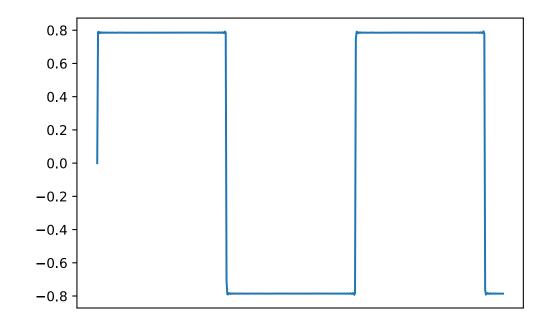


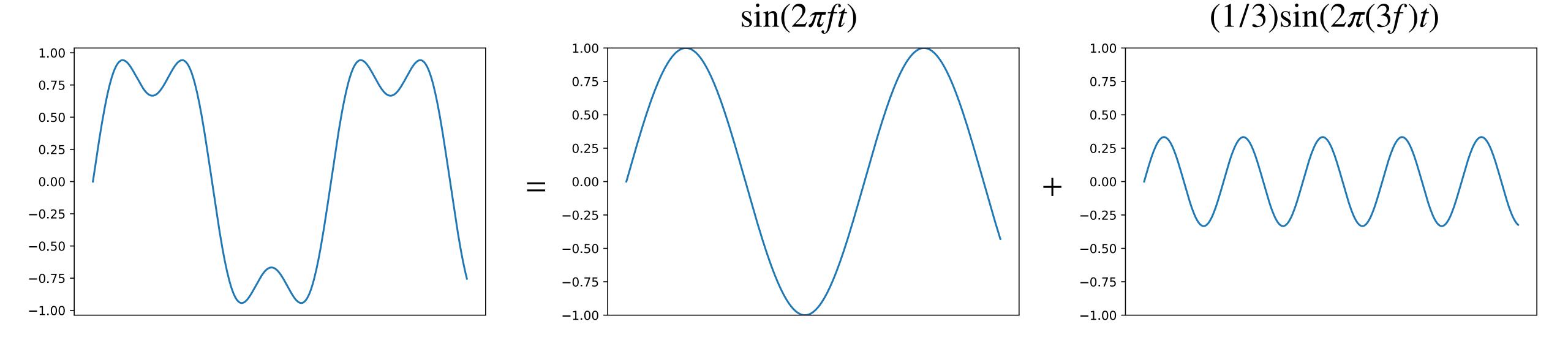
exemple: $g(t) = \sin(2\pi ft) + (1/3)\sin(2\pi(3f)t)$

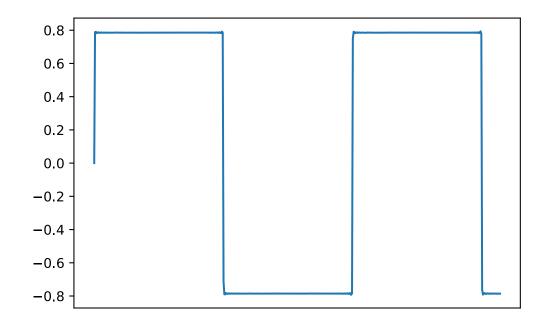


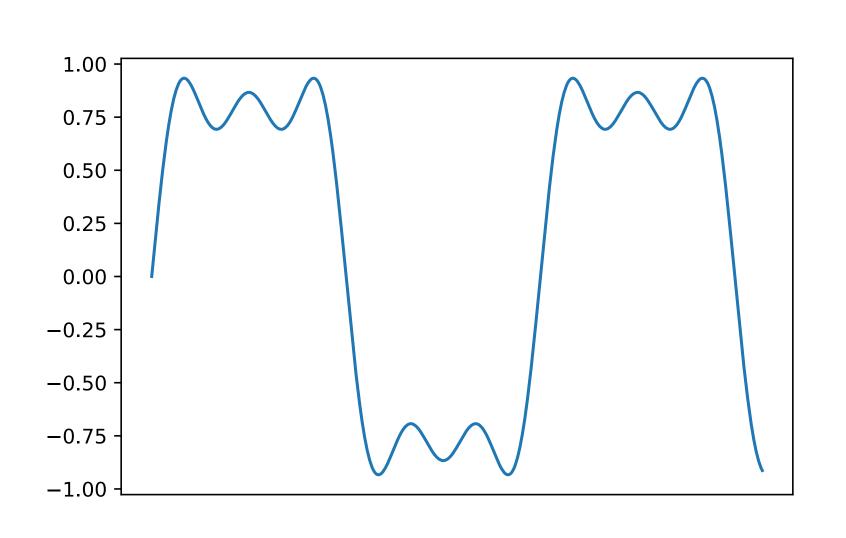
exemple: $g(t) = \sin(2\pi ft) + (1/3)\sin(2\pi(3f)t)$

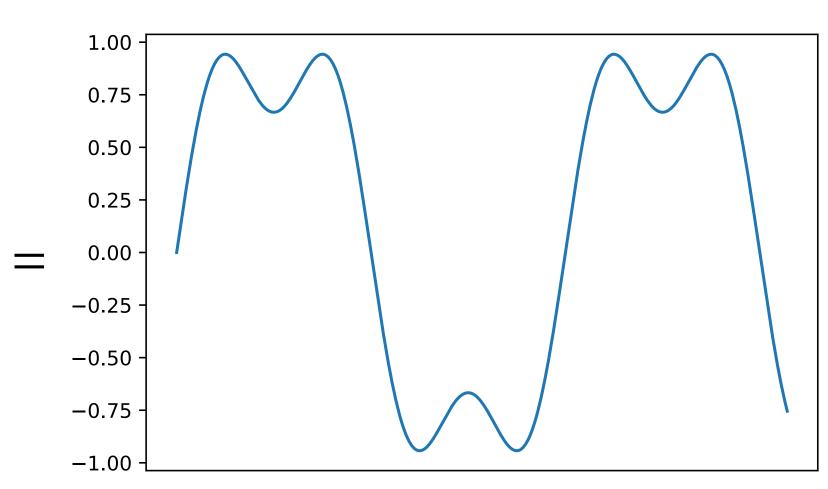


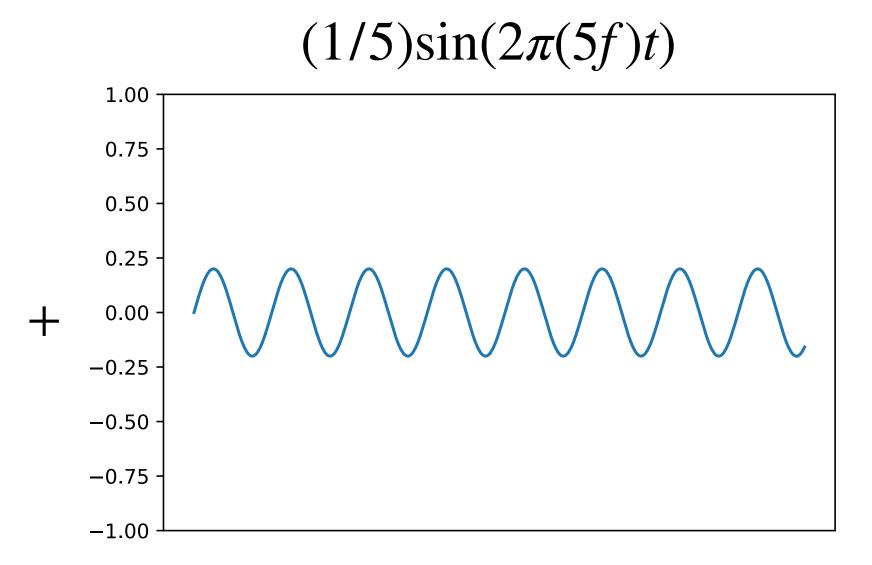


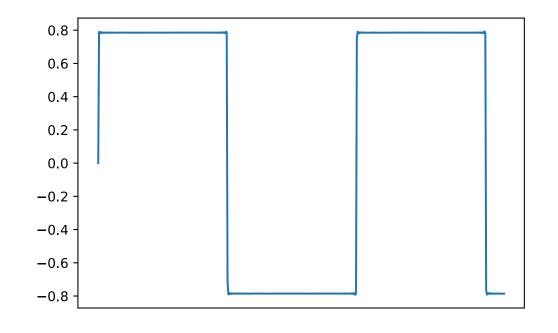


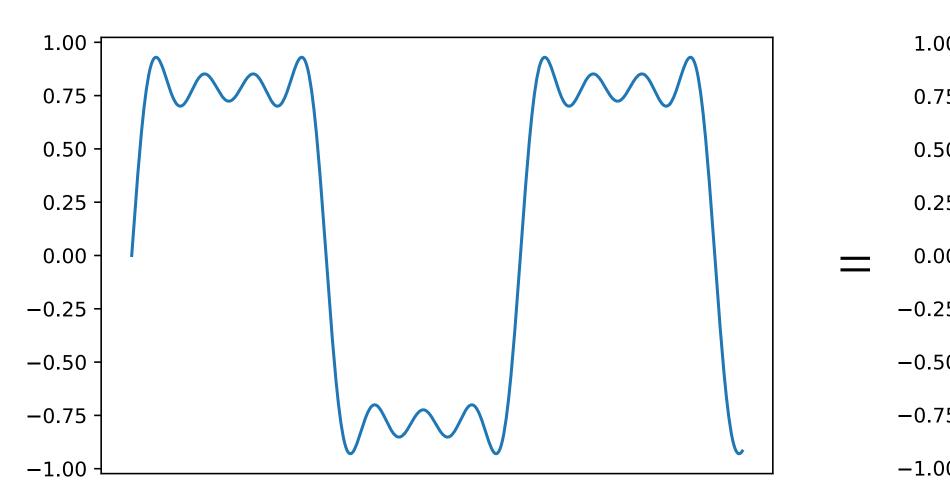


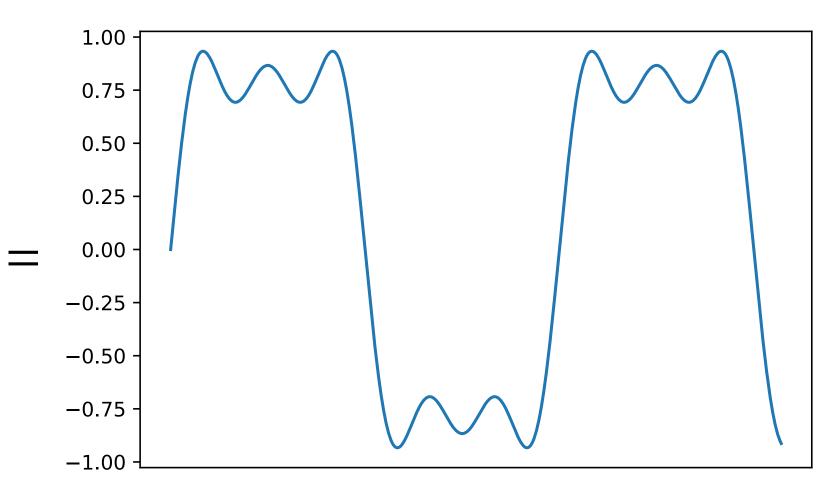


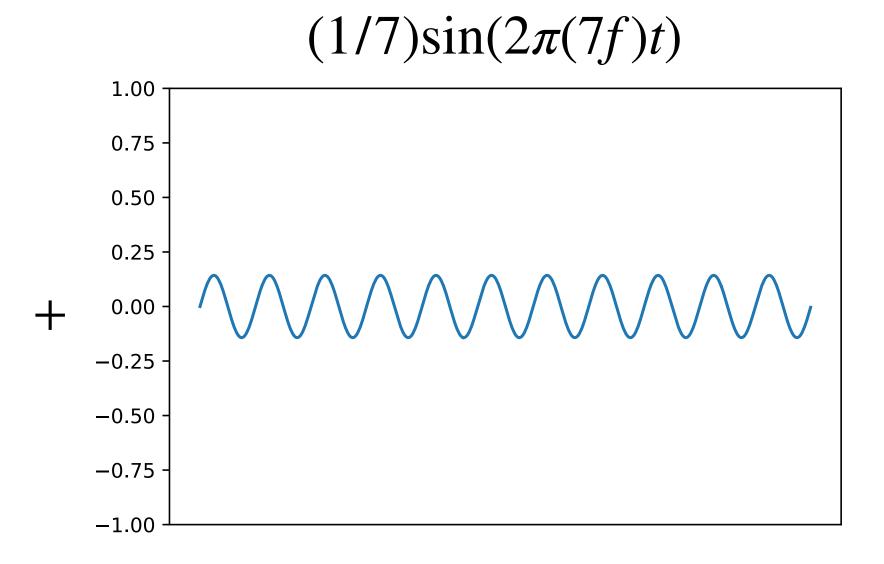


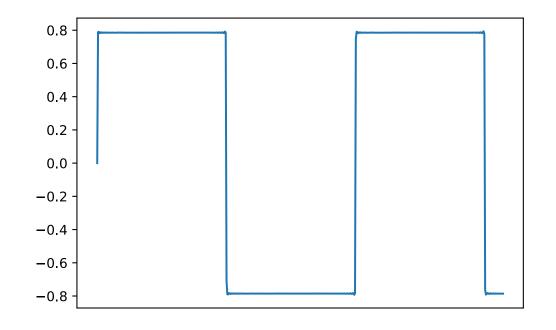


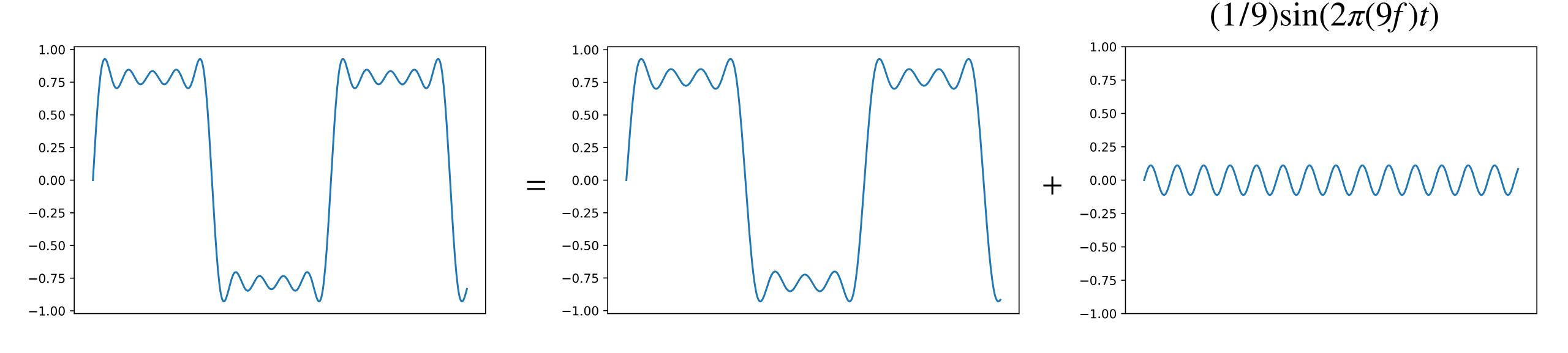


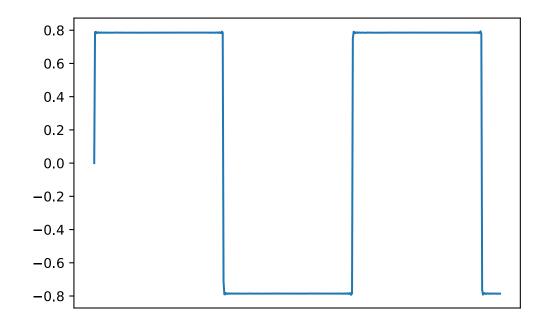


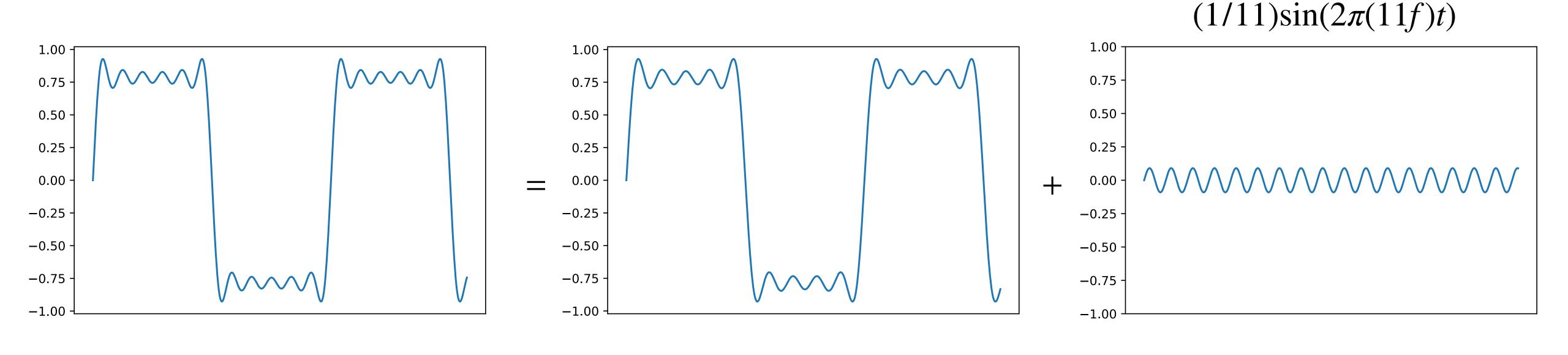




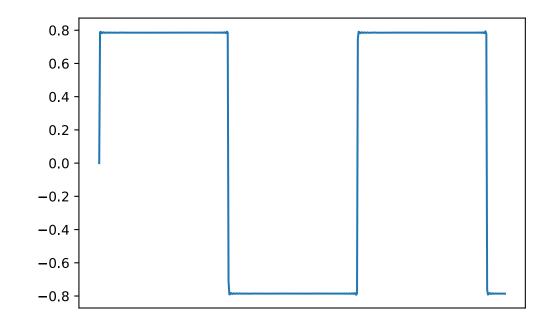






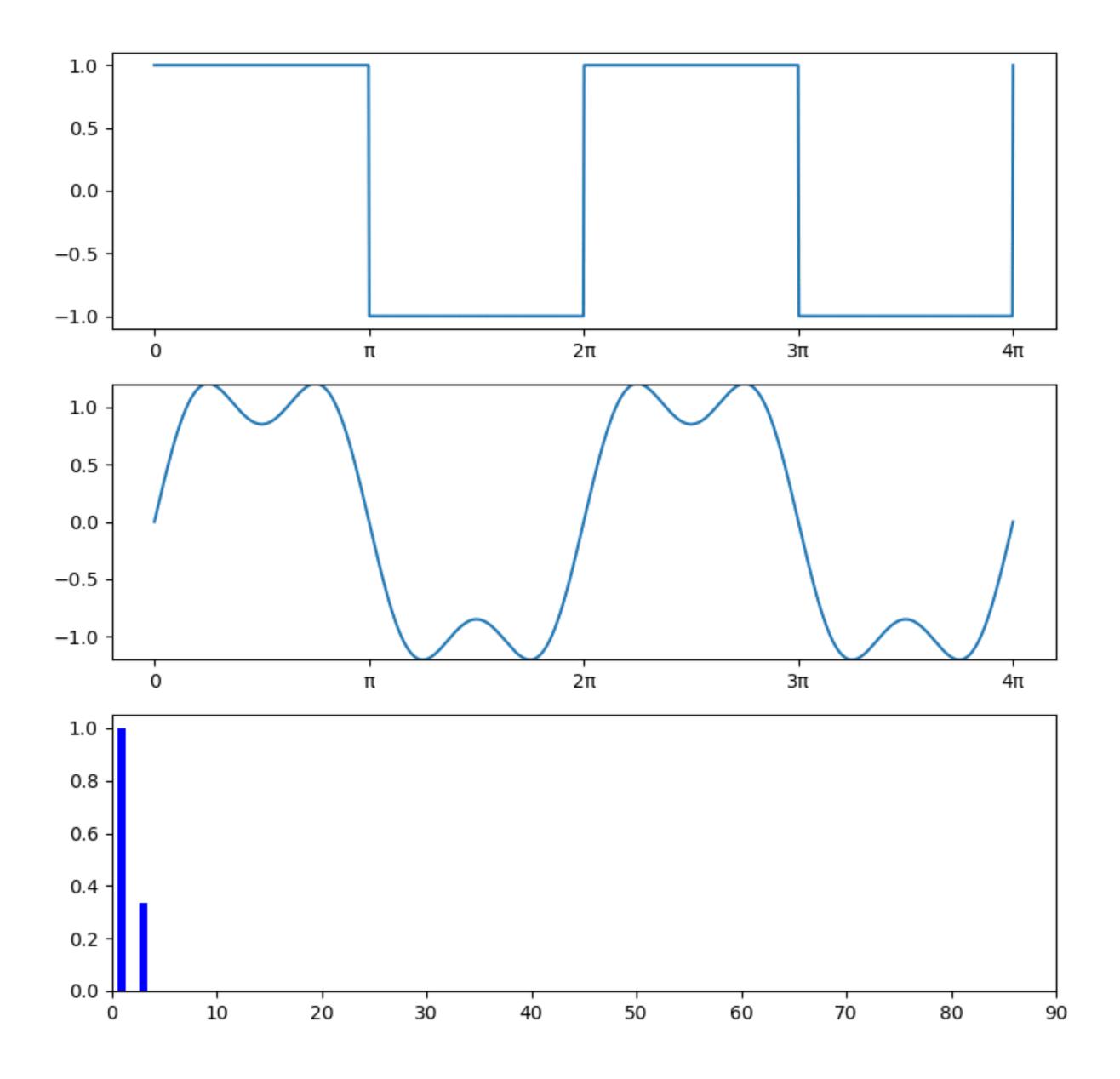


But : représenter ce signal avec des sinus

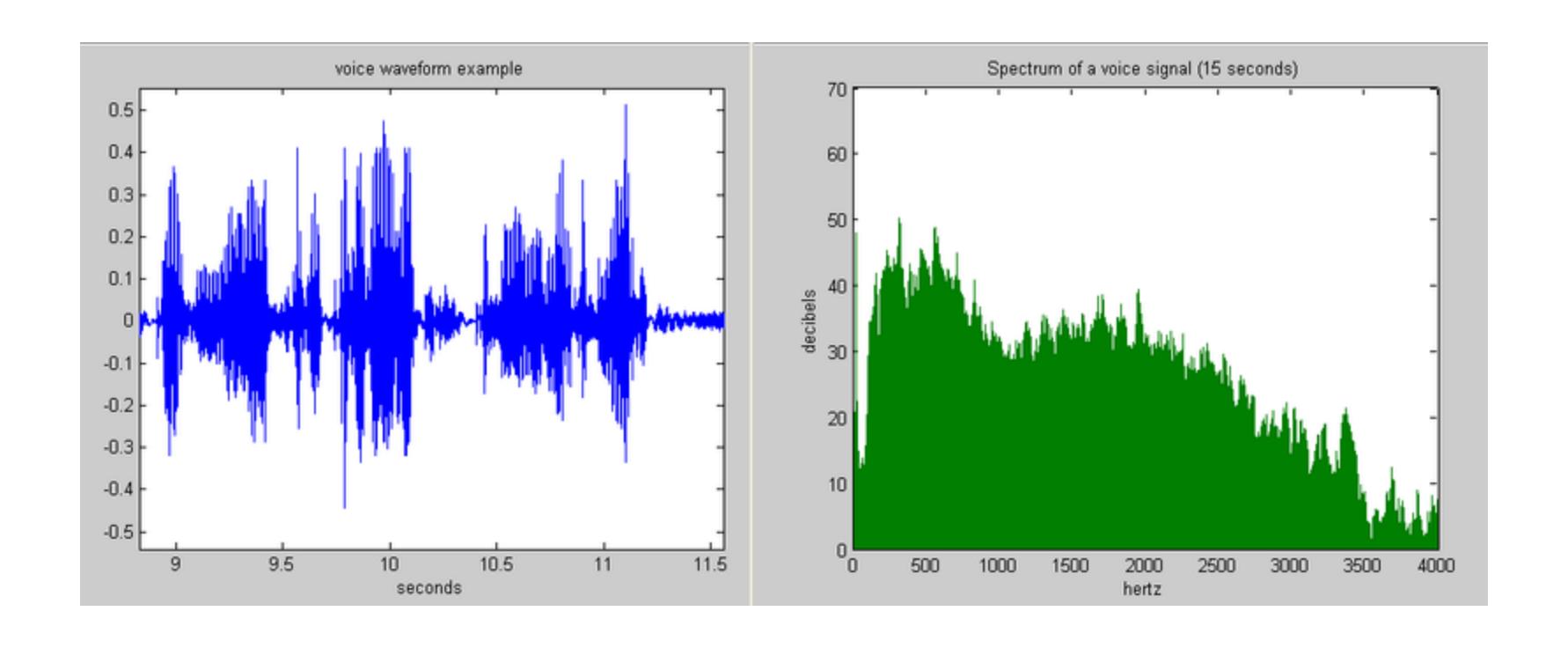


$$\sum_{k=1,k \text{ impair}}^{\infty} \frac{1}{k} \sin(2\pi kt)$$

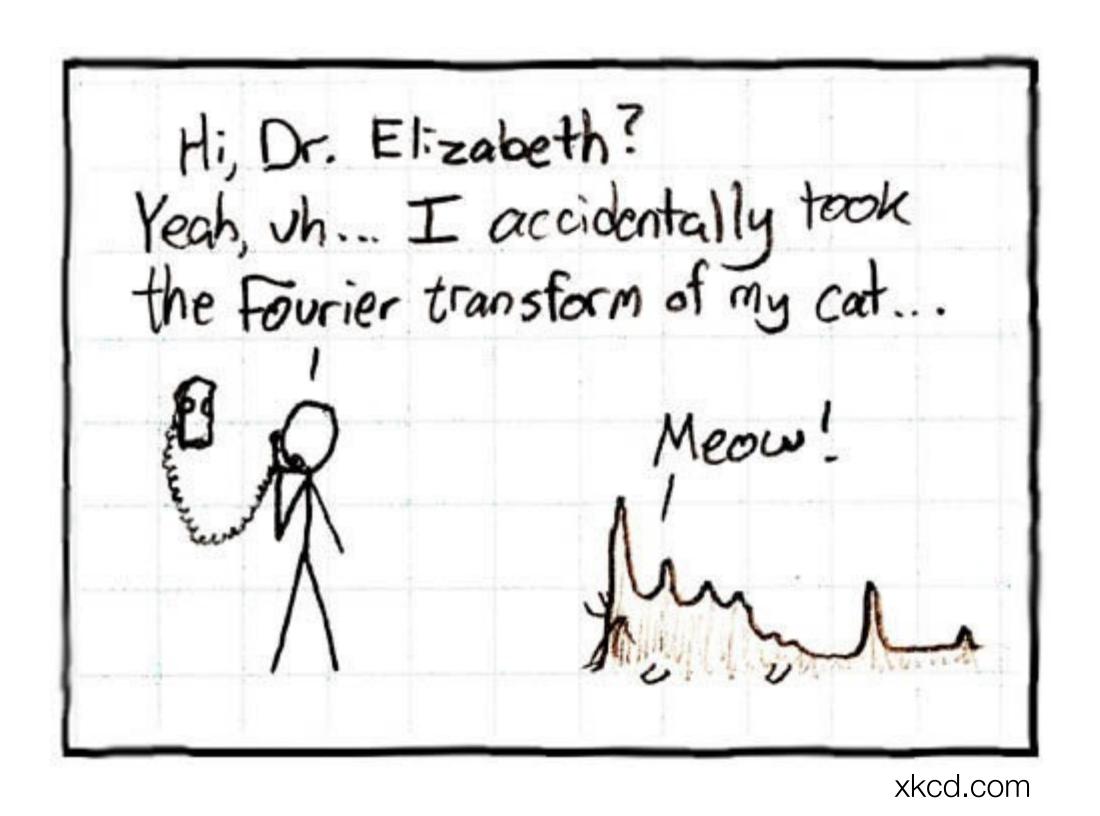
Source : Efros



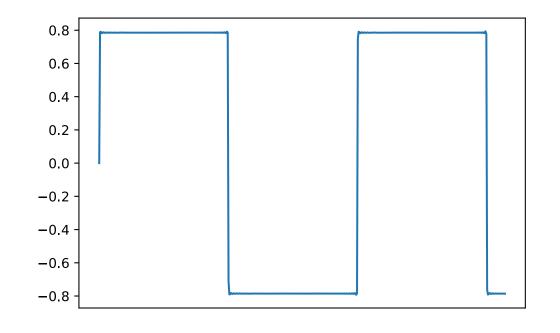
Exemple: musique



Autres signaux



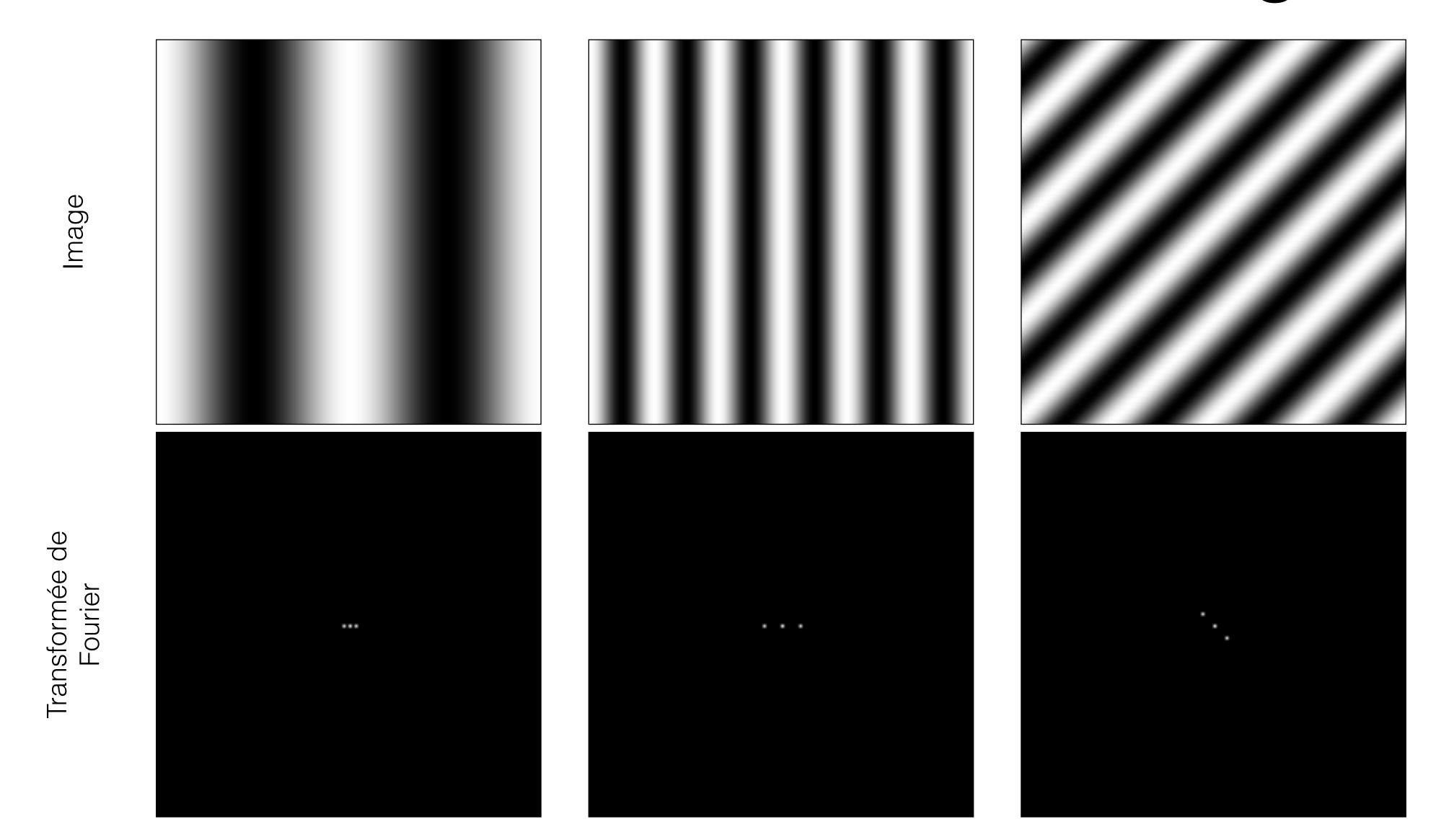
But : représenter ce signal avec des sinus



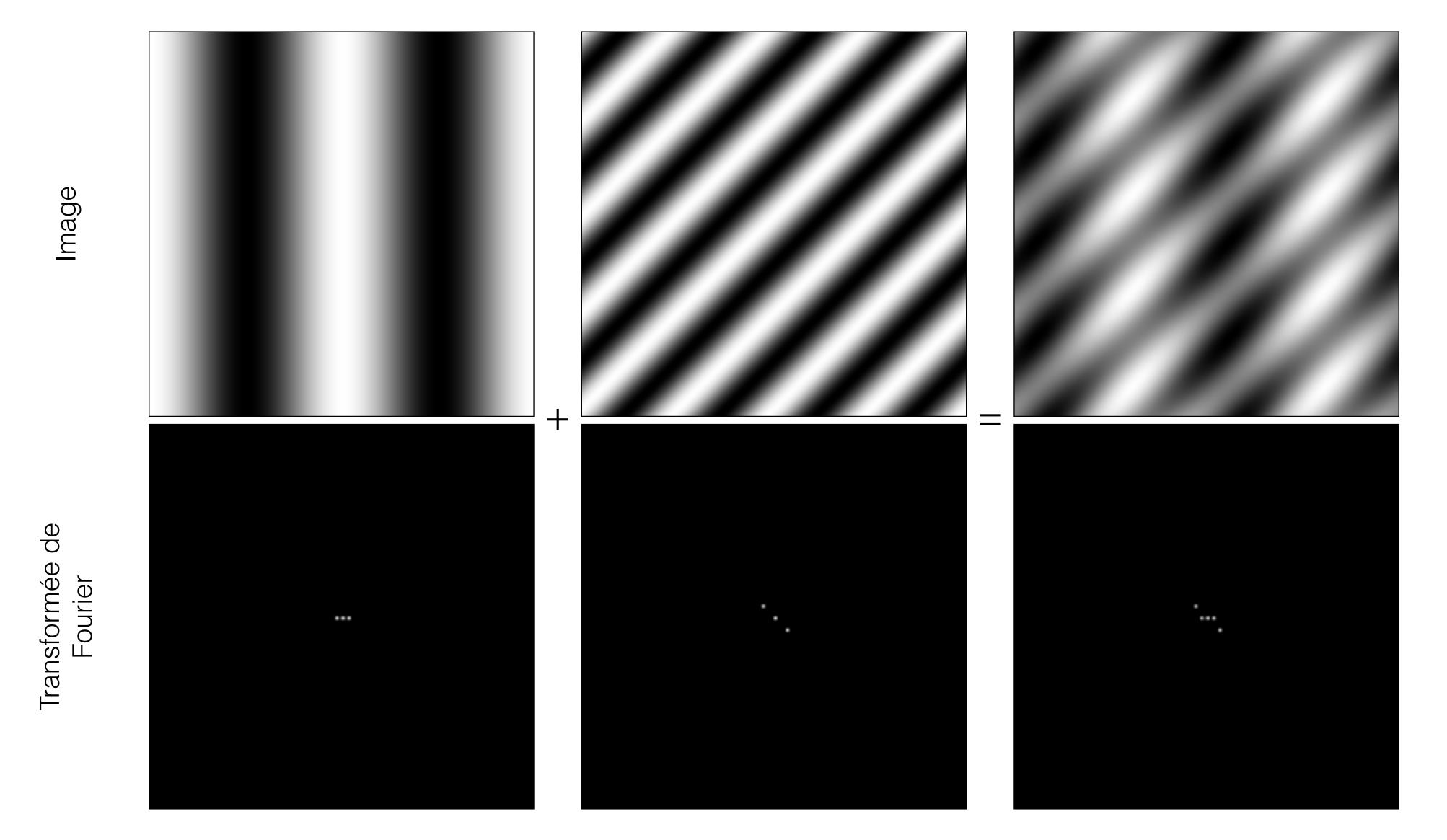
$$\sum_{k=1,k \text{ impair}}^{\infty} \frac{1}{k} \sin(2\pi kt)$$

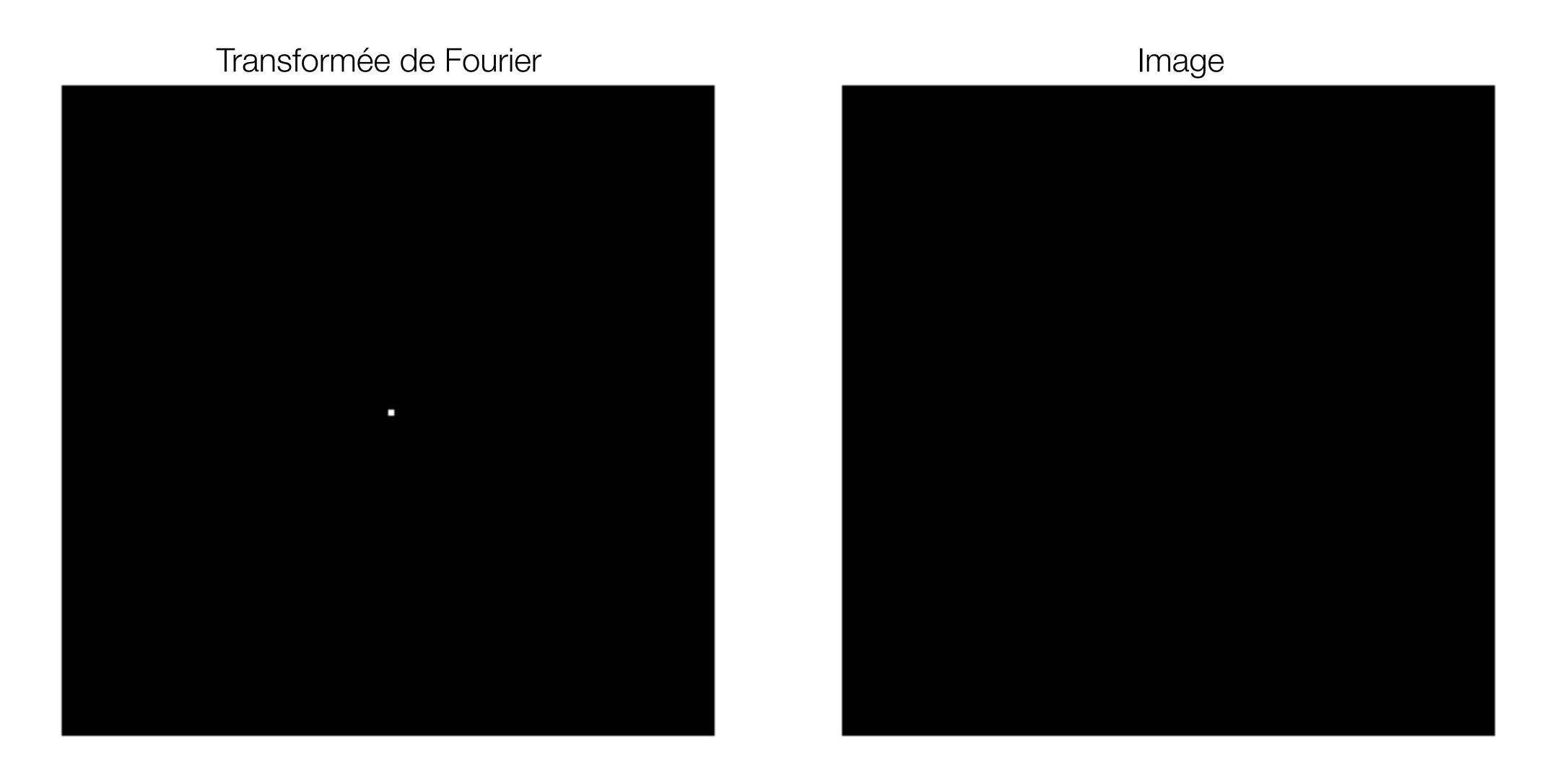
Source : Efros

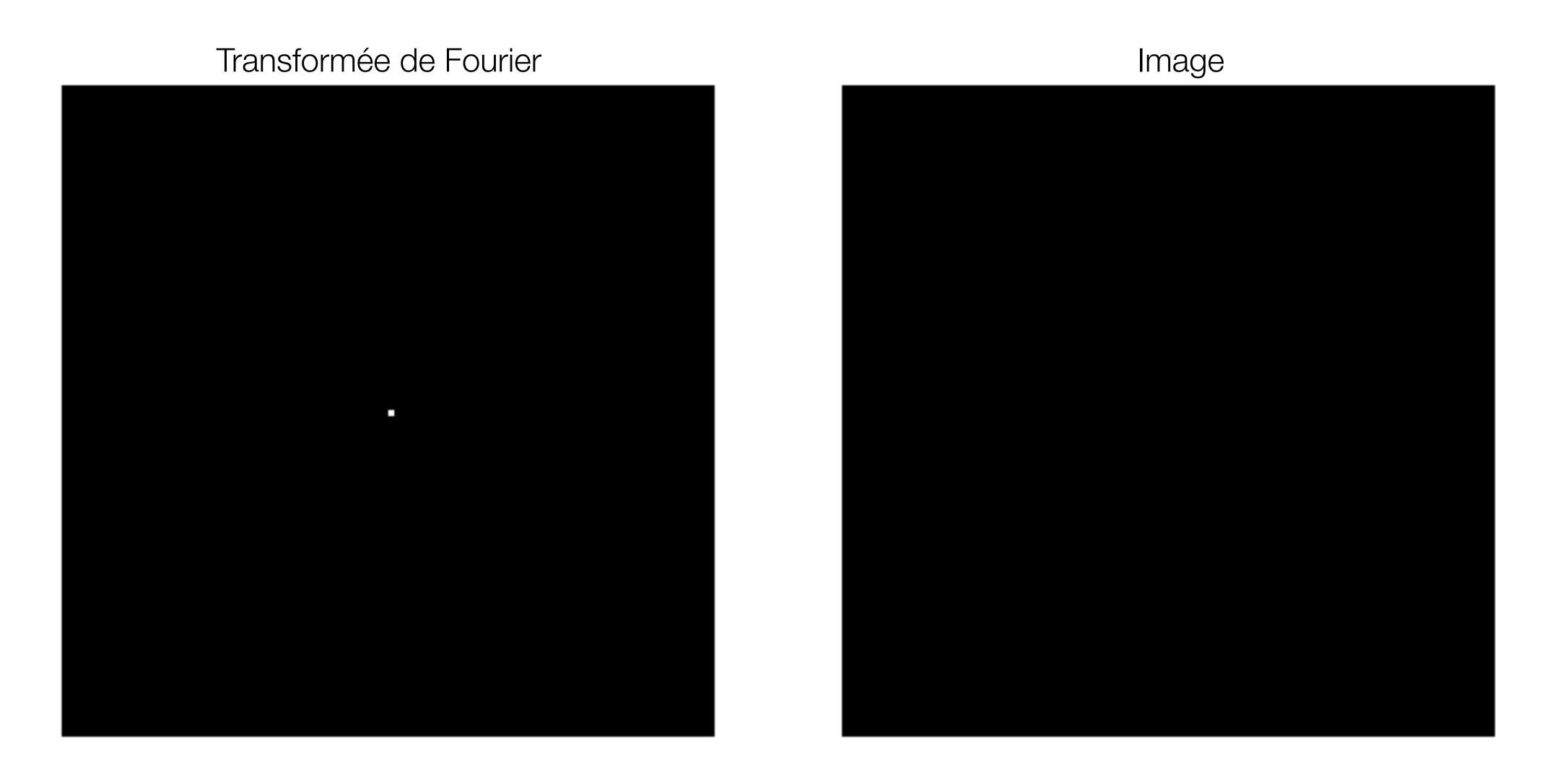
Transformée de Fourier dans les images

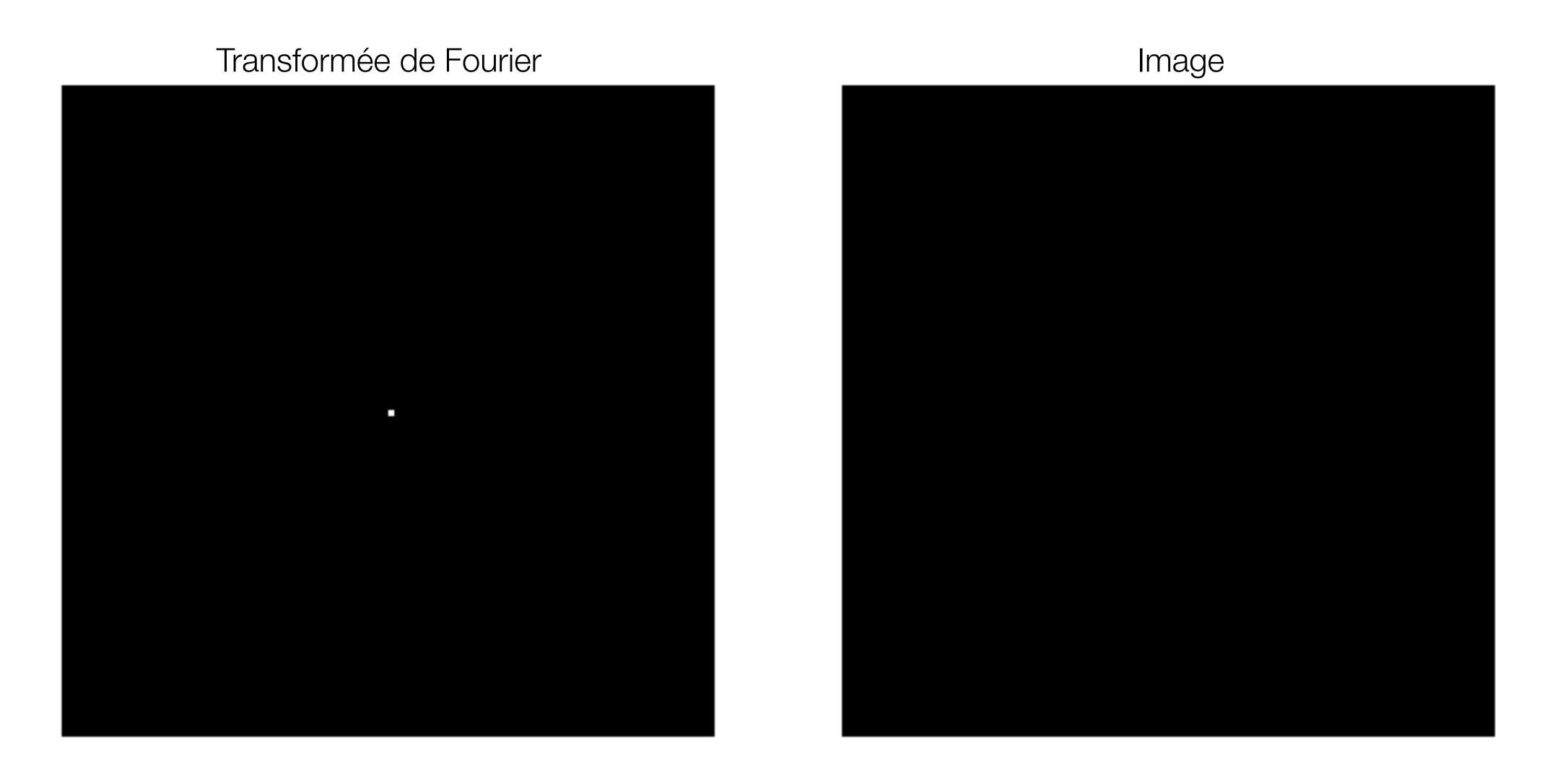


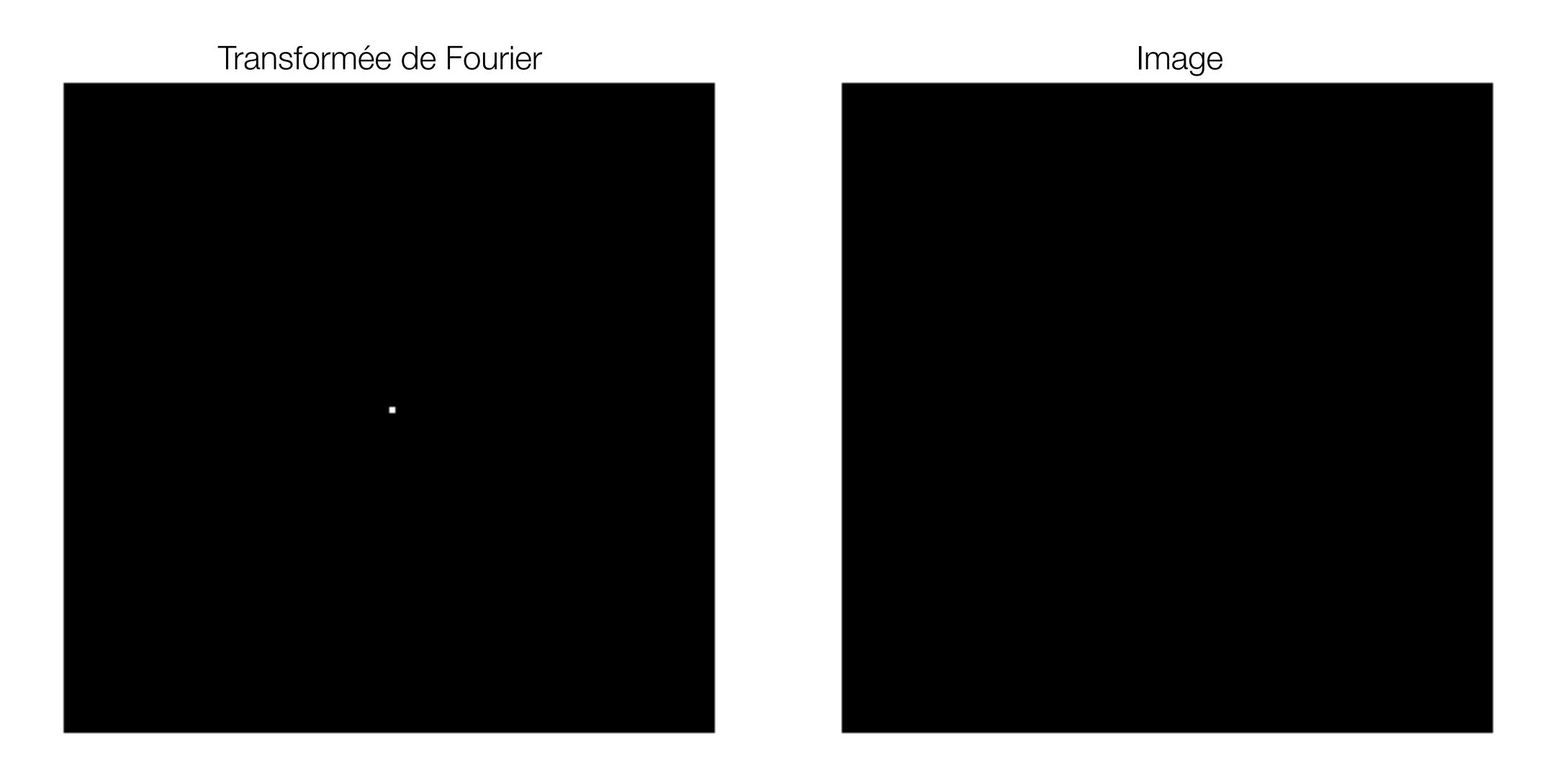
On peut composer les images









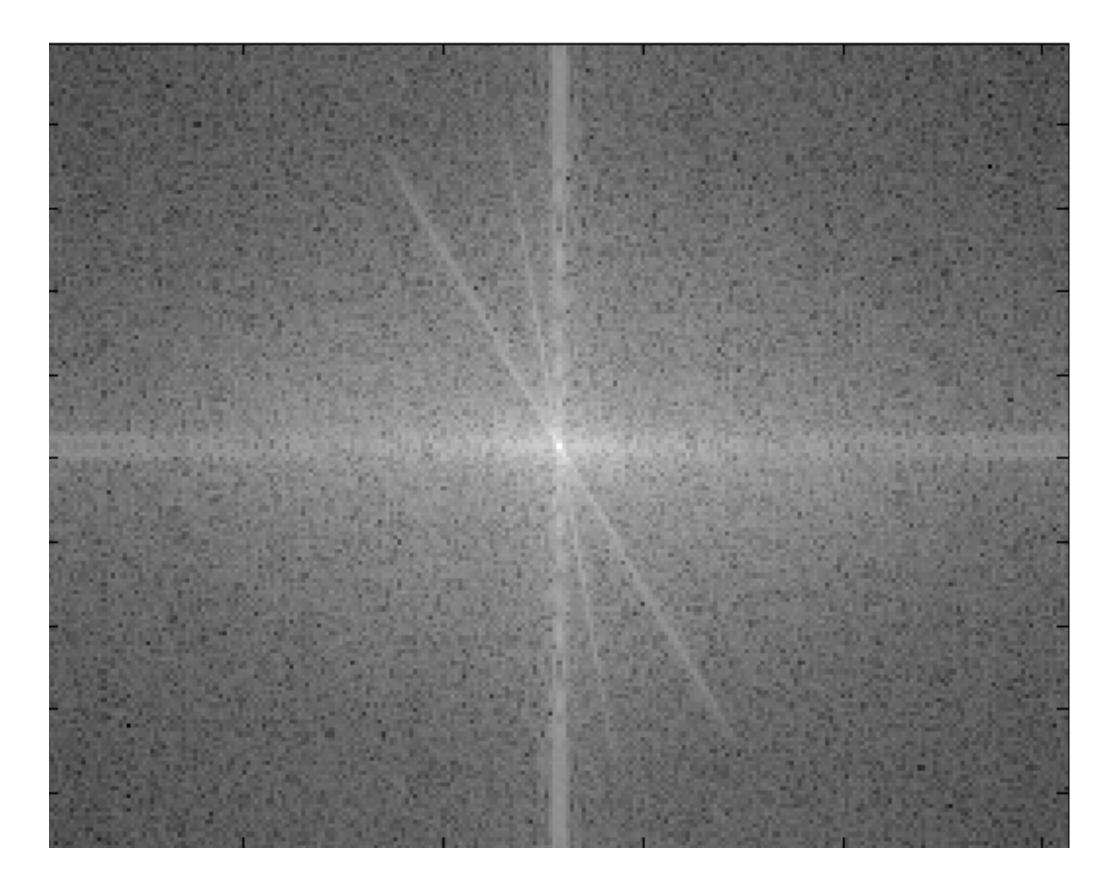


En python

```
from numpy.fft import fft2
fft = fft2(img)
```

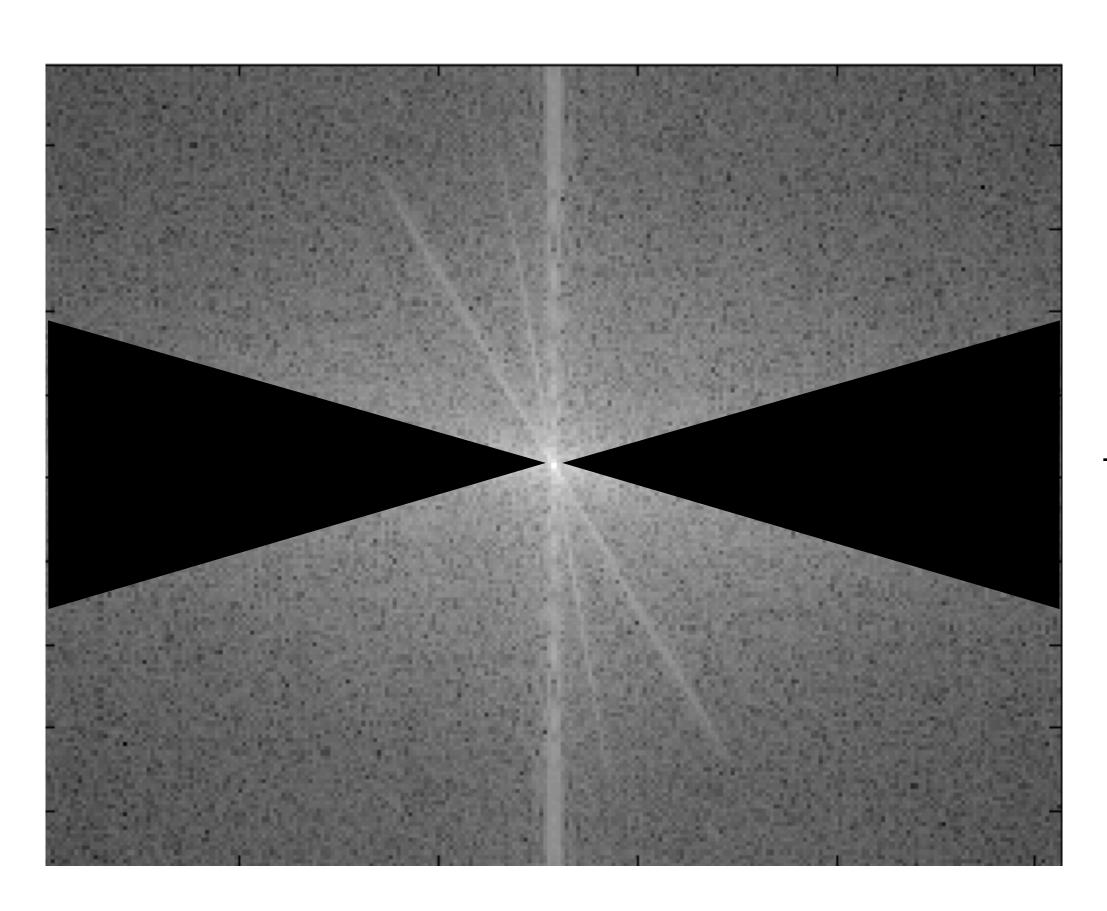
Pour l'affichage :

```
import matplotlib.pyplot as plt
plt.imshow(np.log(np.abs(np.fft.fftshift(fil_fft))))
```

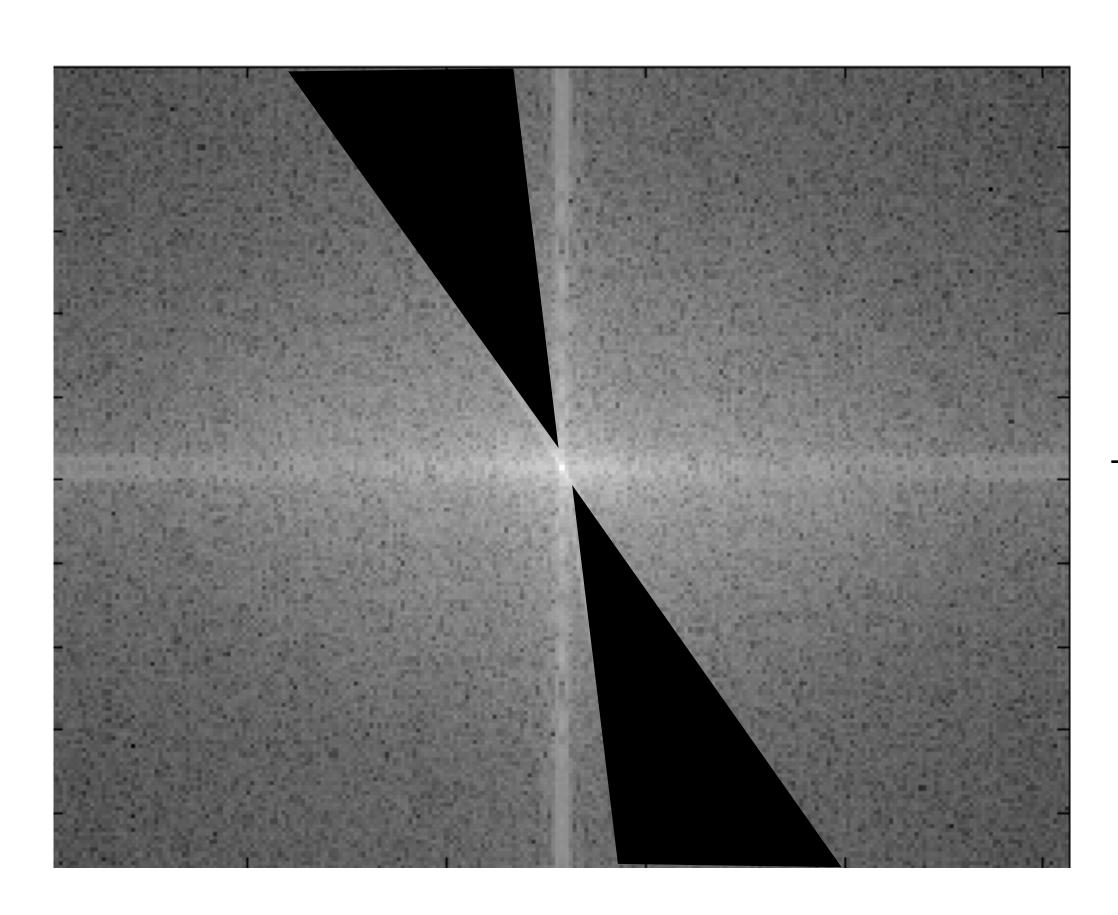



Manipulons la FFT

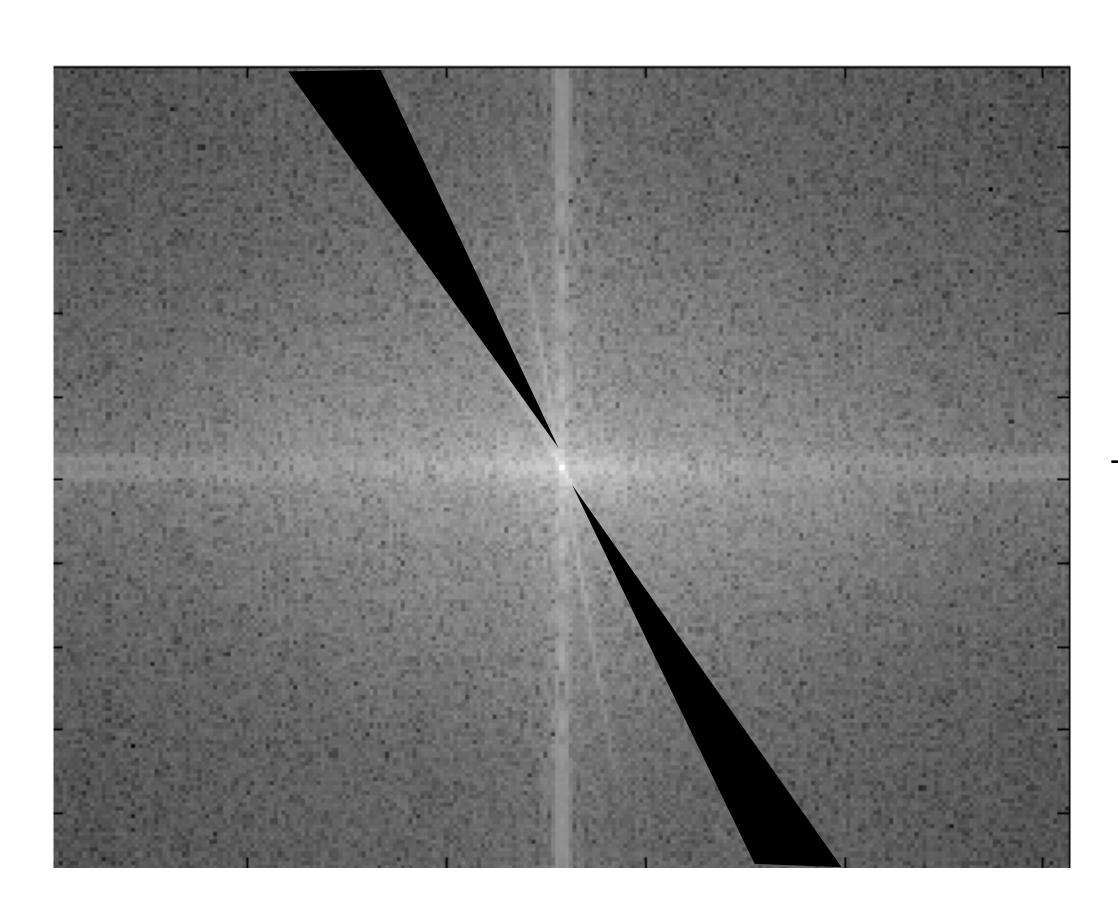




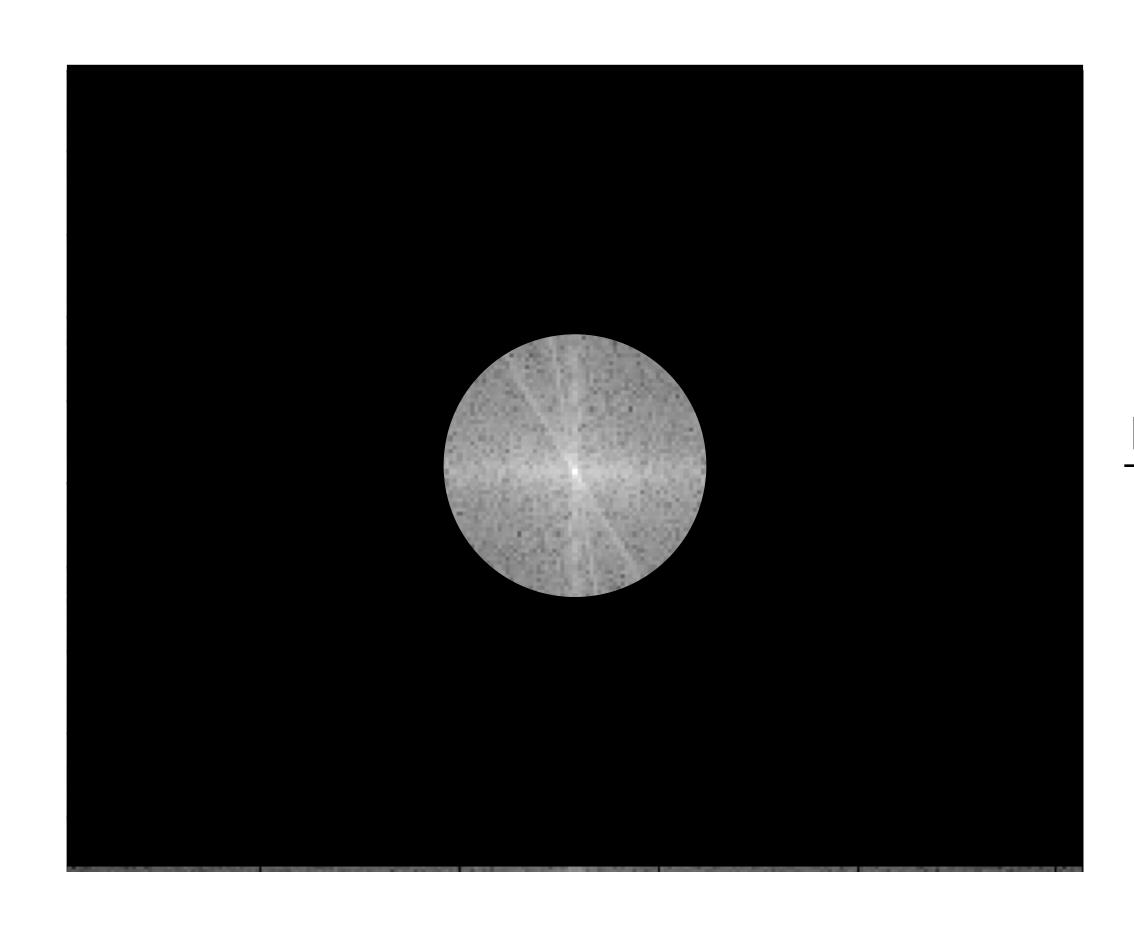
FFT inverse

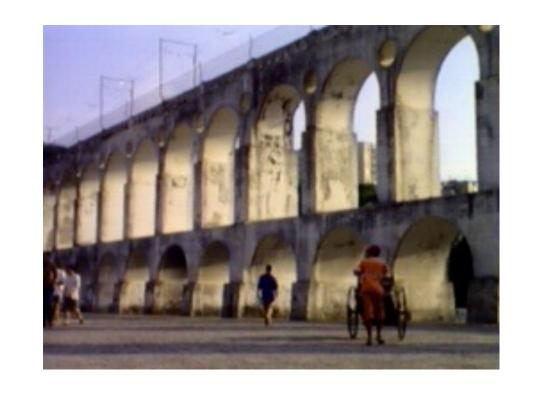


FFT inverse



FFT inverse







FFT inverse



Le théorème de la convolution

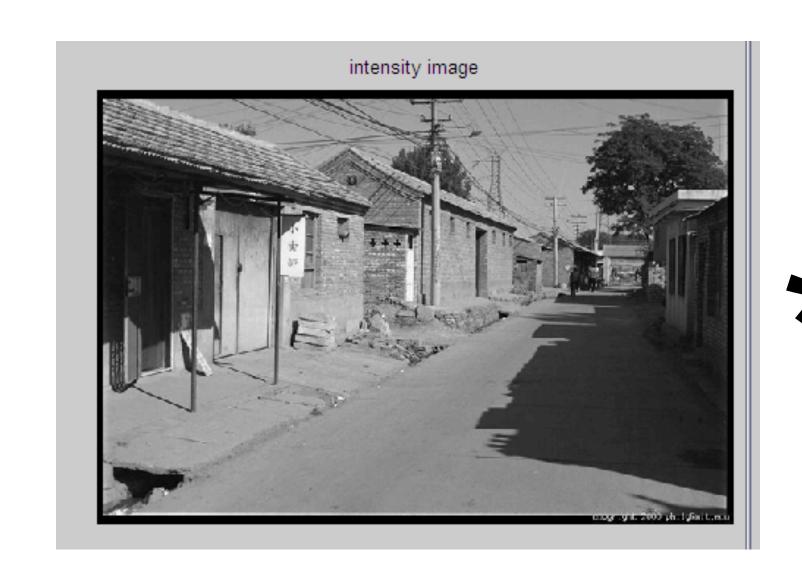
 La transformée de Fourier d'une convolution de deux fonctions est le produit de leur transformée de Fourier

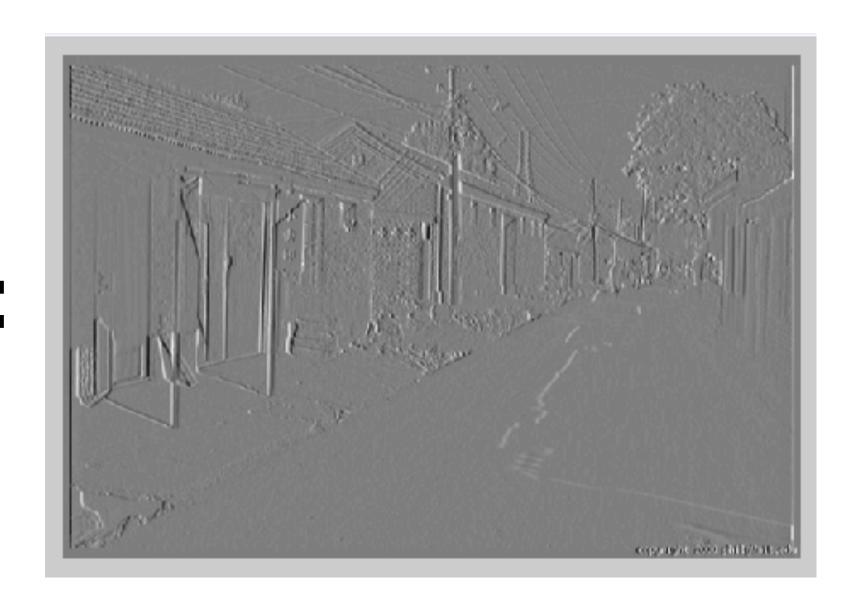
$$F(g*h) = F(g)F(h)$$

• En français : une **convolution** dans le domaine spatial est équivalent à une **multiplication** dans le domaine spectral

Filtrage spatial

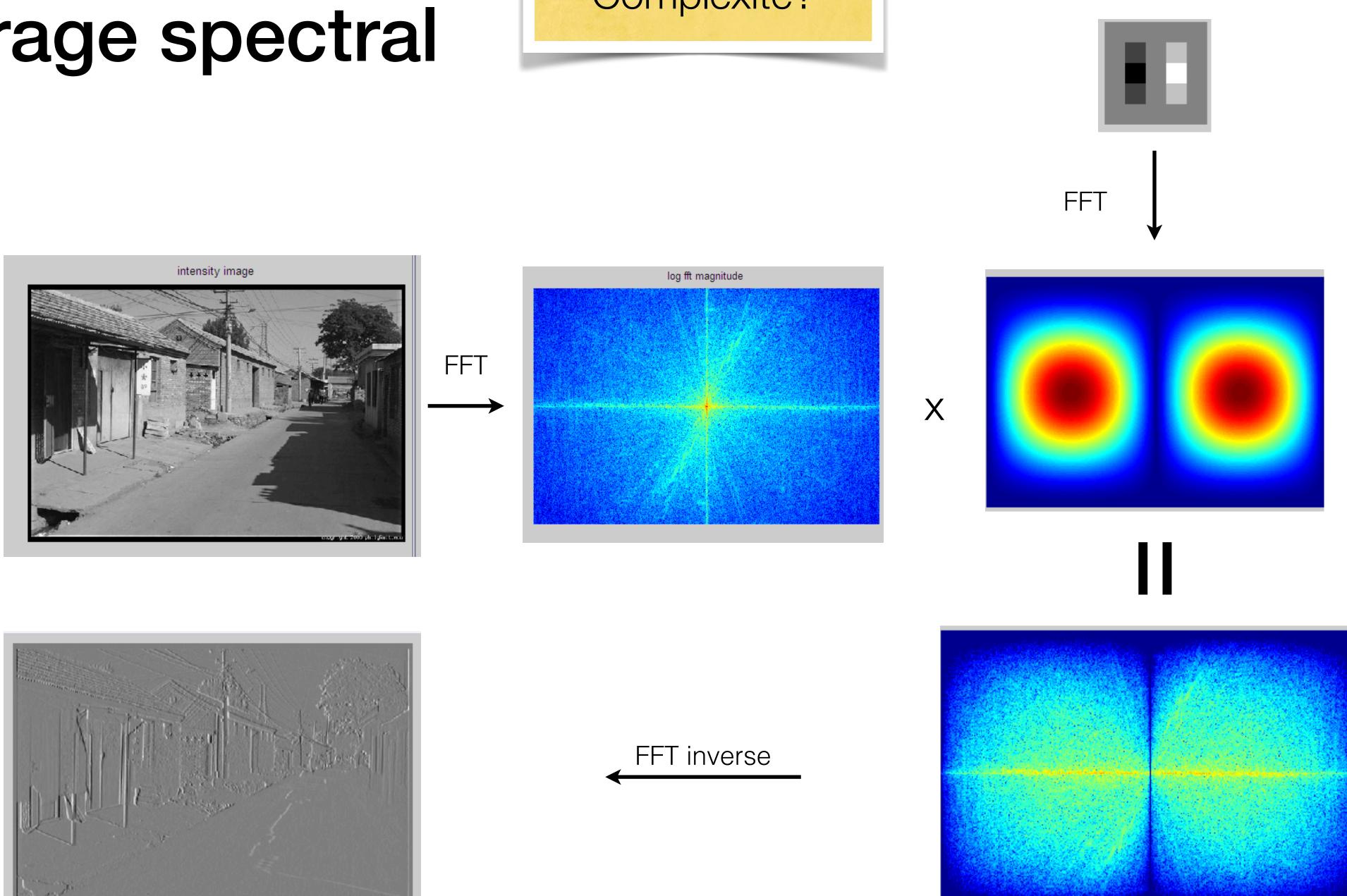
1	0	-1
2	0	-2
1	0	-1





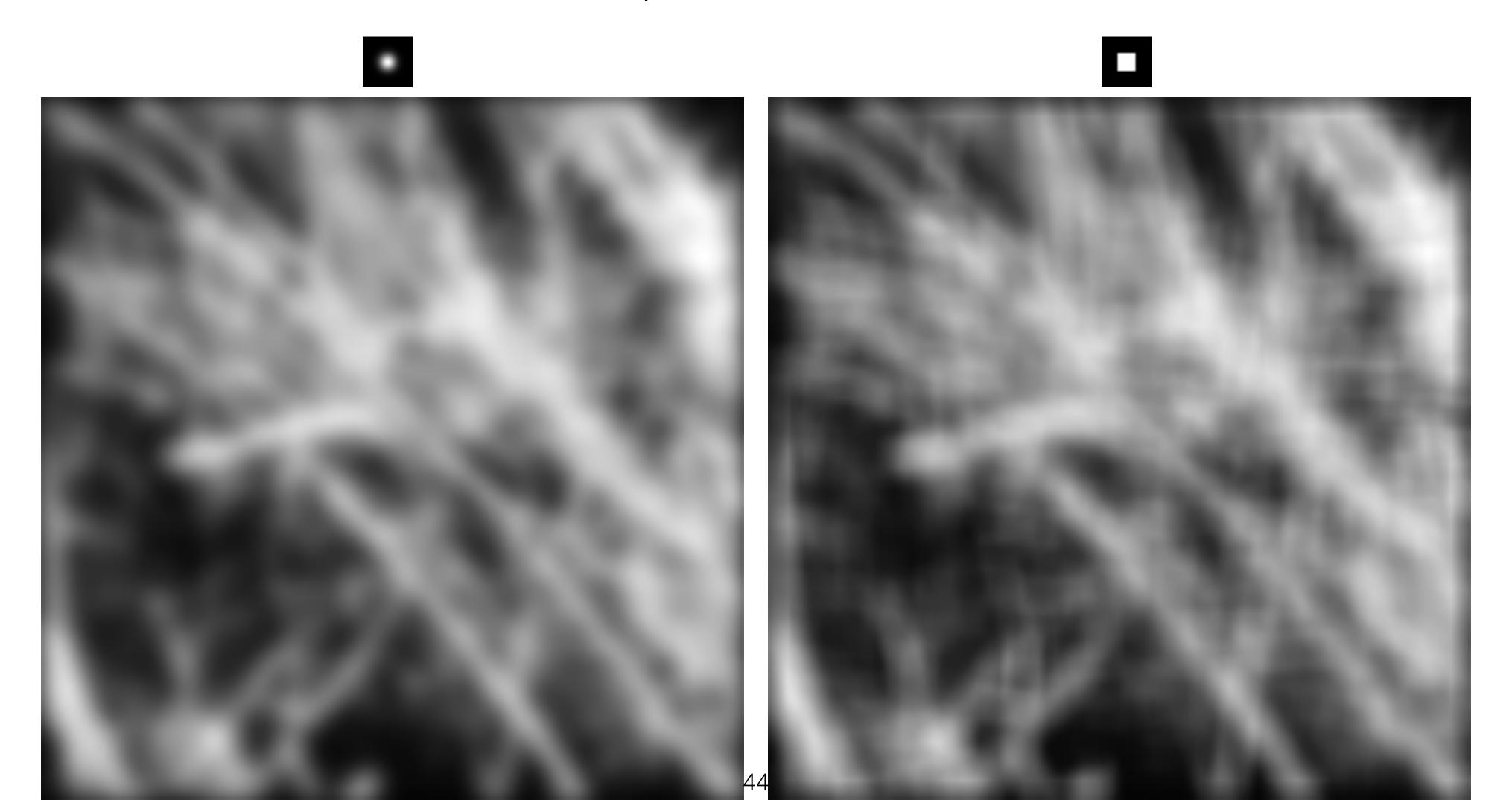
Filtrage spectral

Complexité?



43

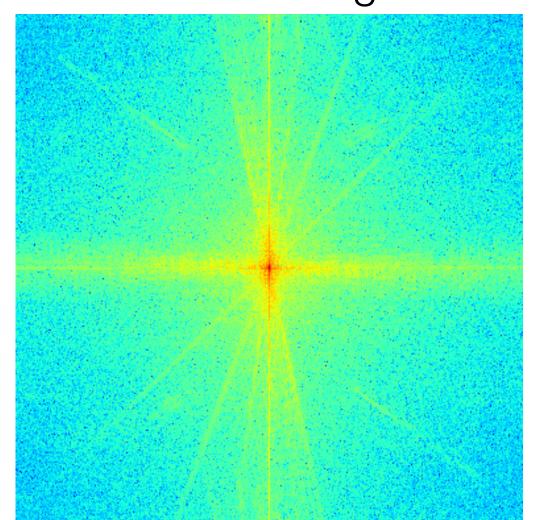
Pourquoi le filtre gaussien nous donne une image lisse, mais pas le filtre boîte?

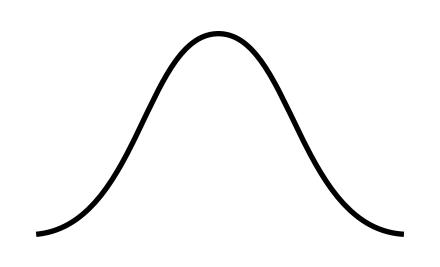


Filtre gaussien

image

TF de l'image





TF du filtre

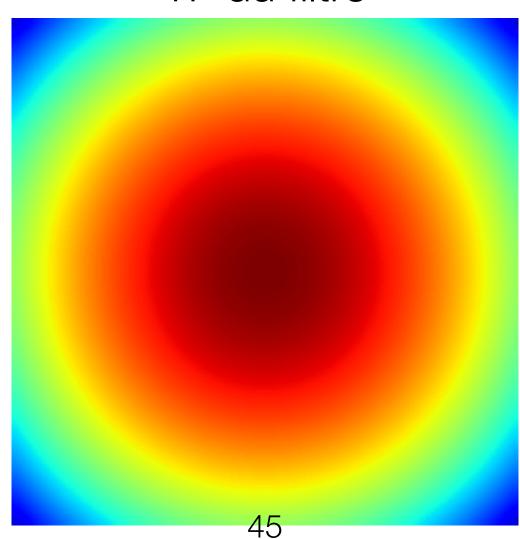
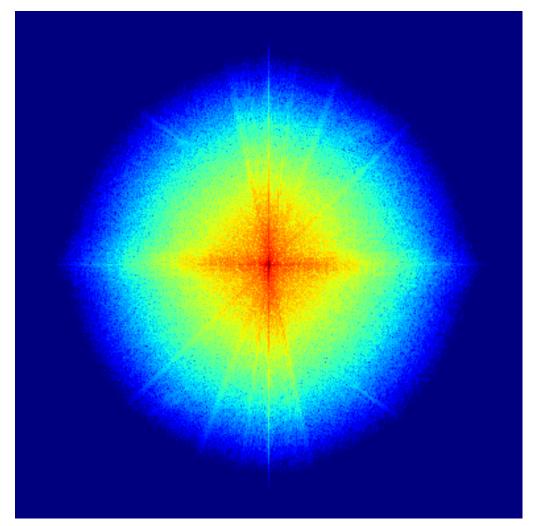


image filtrée

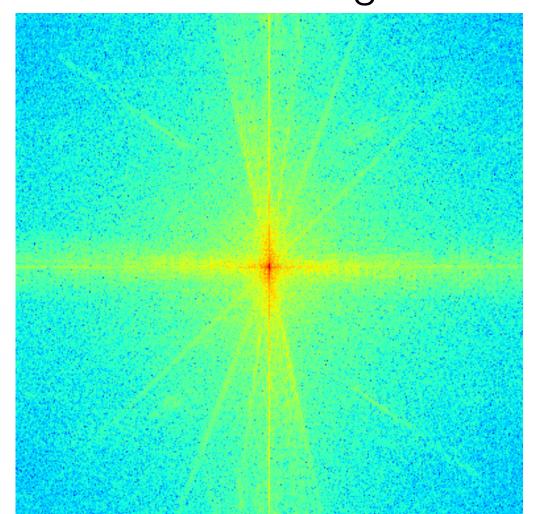
TF de l'image filtrée



Filtre « boîte »

image

TF de l'image



TF du filtre

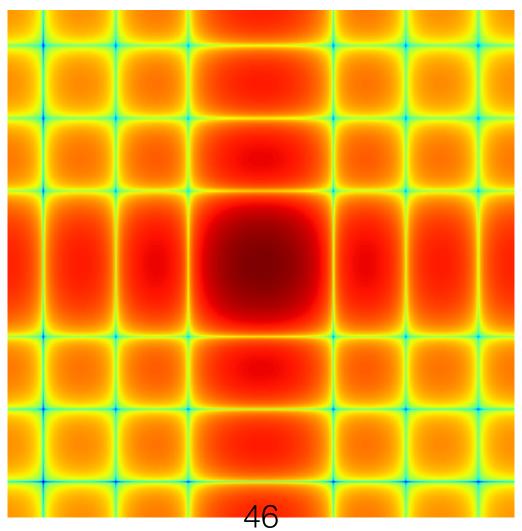
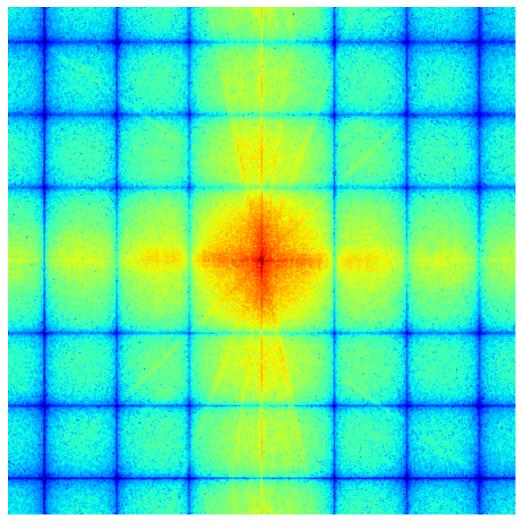


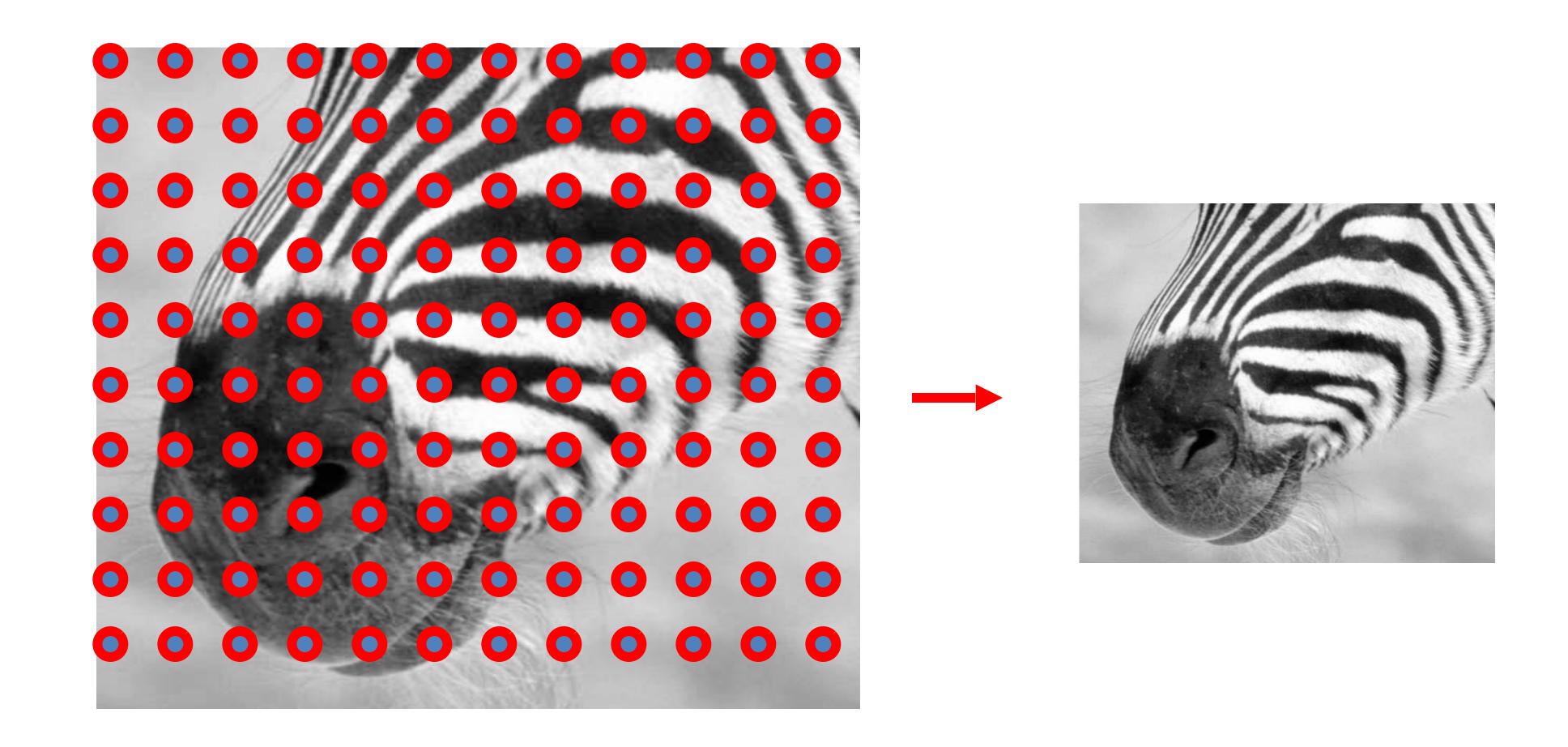
image filtrée

TF de l'image filtrée

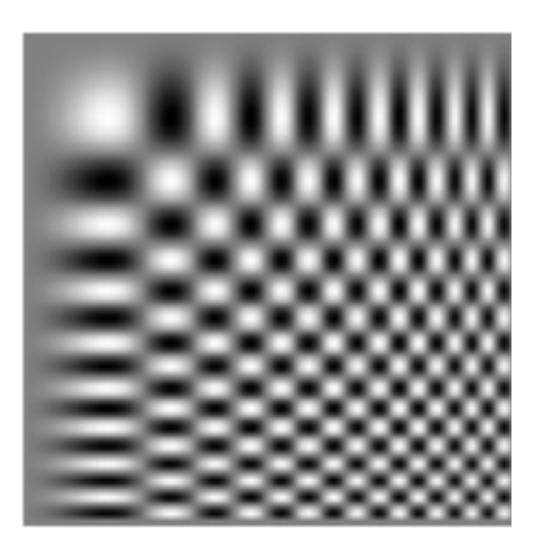


Pourquoi une image à plus faible résolution est toujours compréhensible? Quelle est l'information perdue?

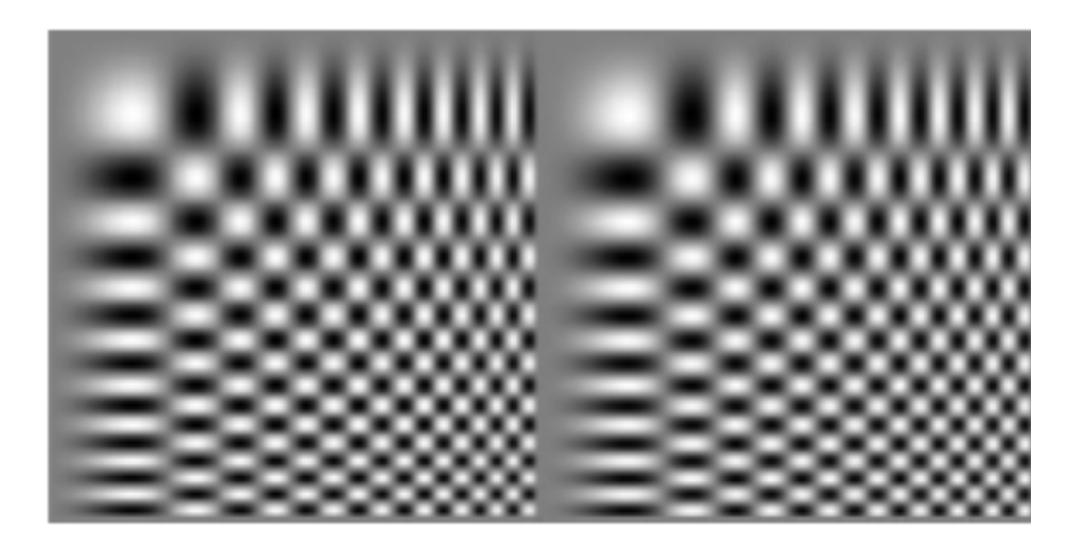
Réduction de taille d'un facteur 2



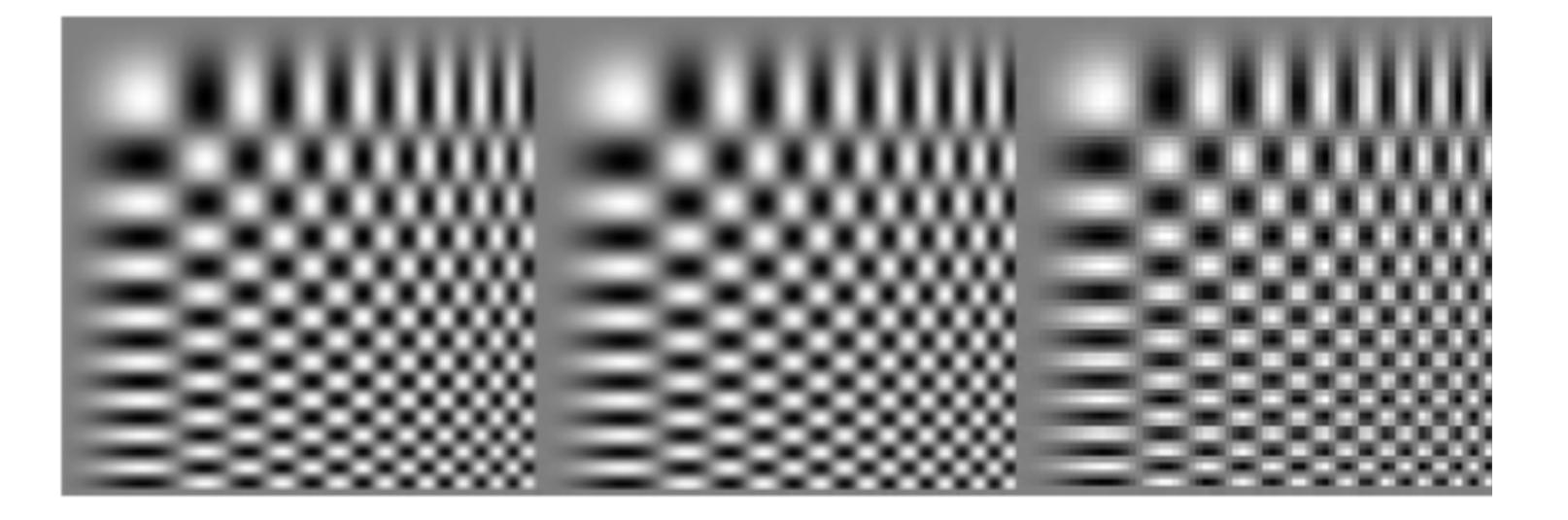
256x256



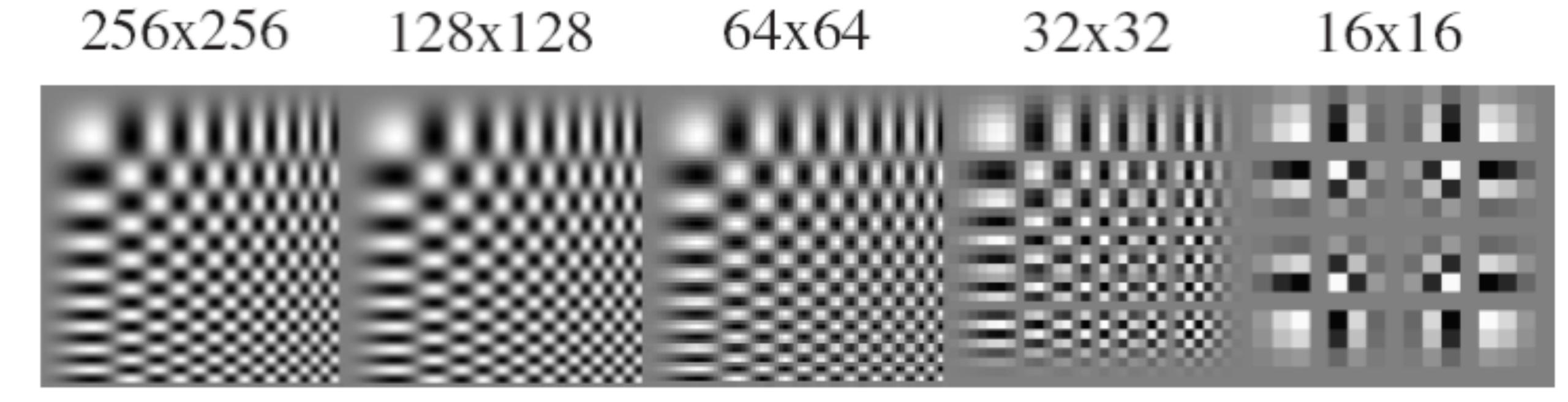
256x256 128x128



256x256 128x128 64x64

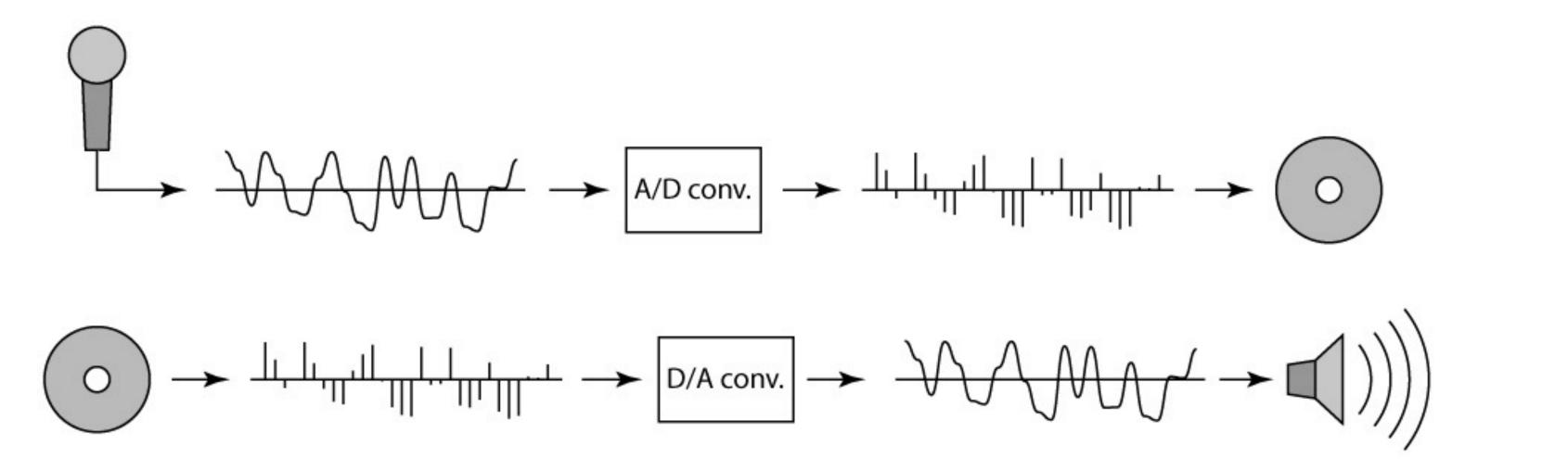


256x256 128x128 64x64 32x32



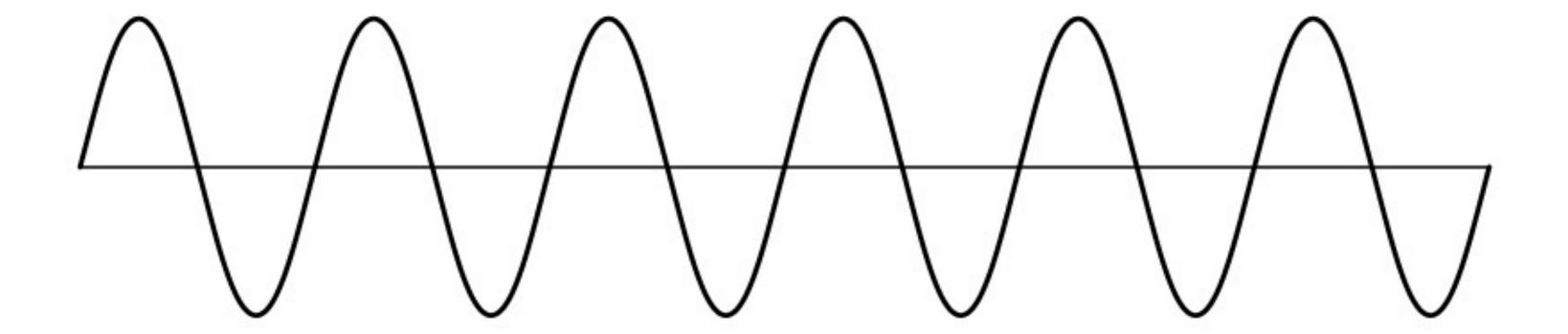
Exemple: 1D (audio)

- Enregistrement : son → échantillons numériques
- Écoute : échantillons numériques → son
 - comment s'assurer que l'on peut « remplir les trous » correctement?



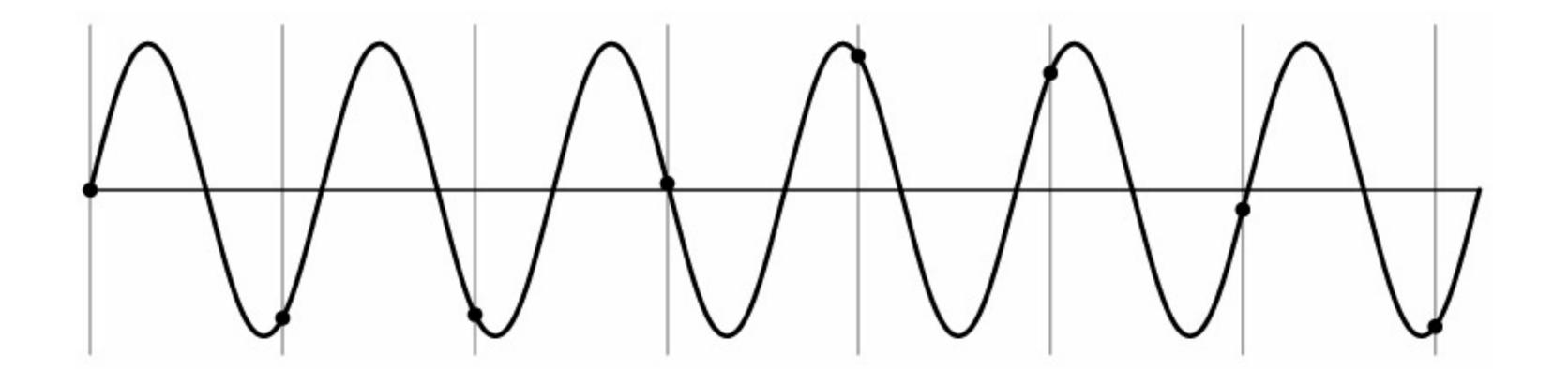
Échantillonnage et reconstruction

• Signal: sinus en 1-D



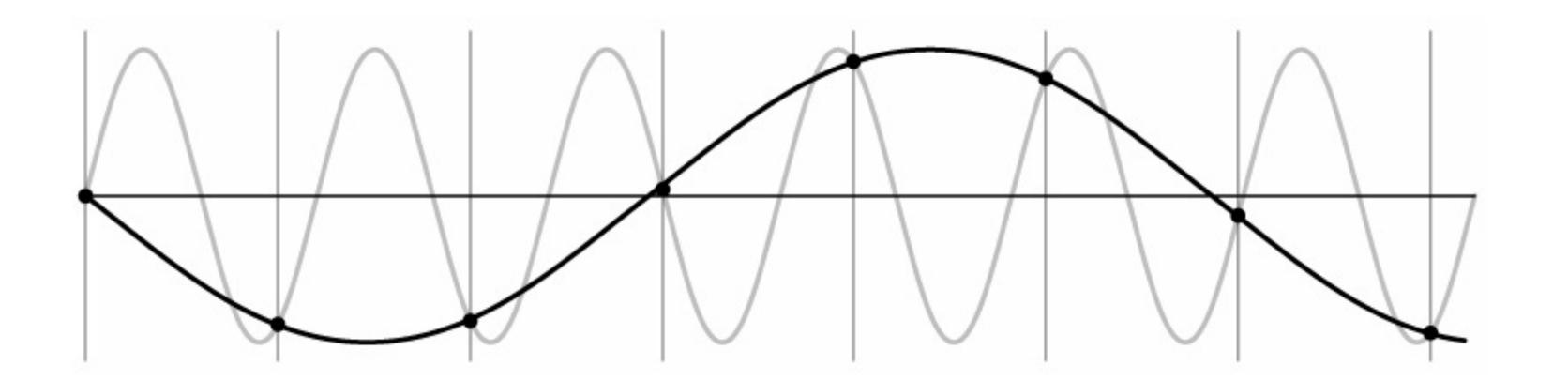
Échantillonnage et reconstruction

- On échantillonne à une certain fréquence
- Qu'arrive-t-il si on en « manque des bouts »?
 - Pas trop de surprise : on perd de l'information



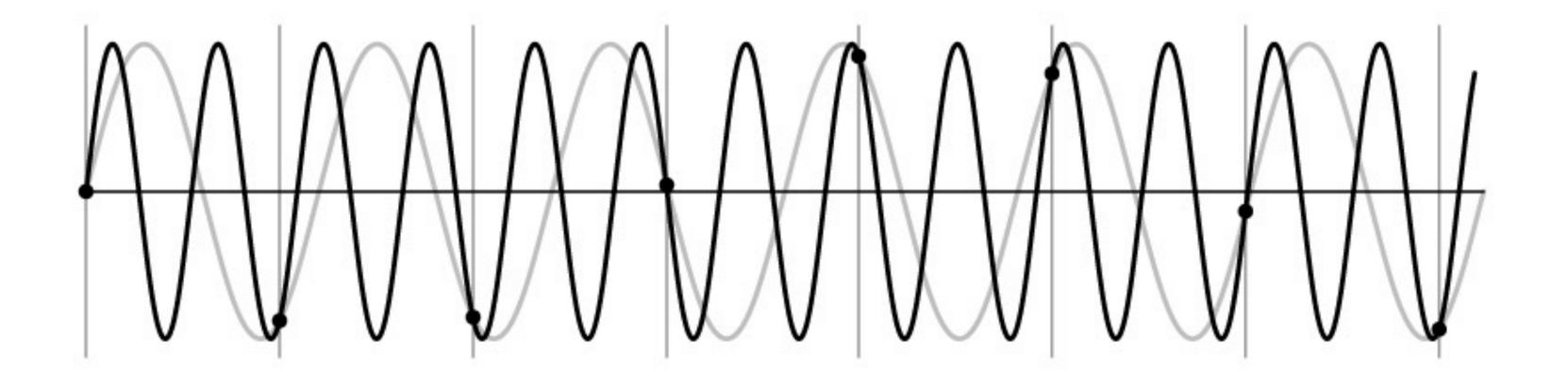
Échantillonnage et reconstruction

 Surprise: le signal reconstruit est confondu avec un autre signal, à fréquence plus faible



Recouvrement spectral

• Signaux de fréquences différentes « déguisés » dans notre signal original



58

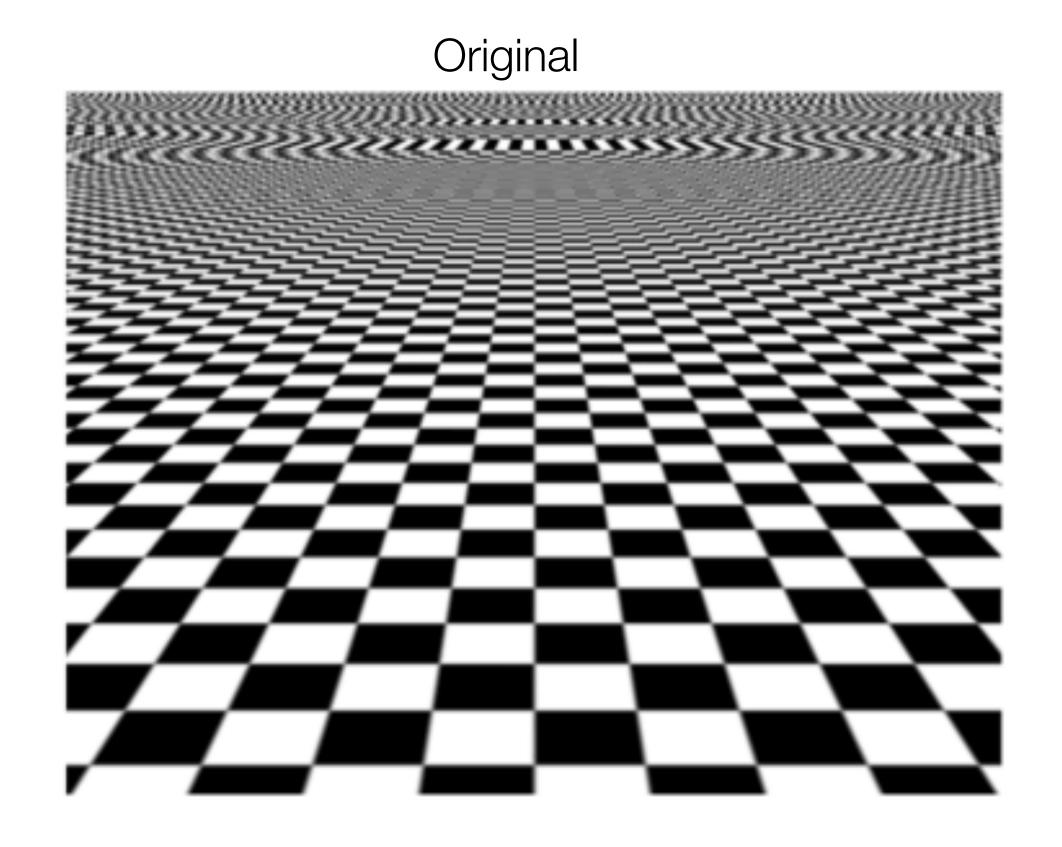
Recouvrement spectral dans les vidéos

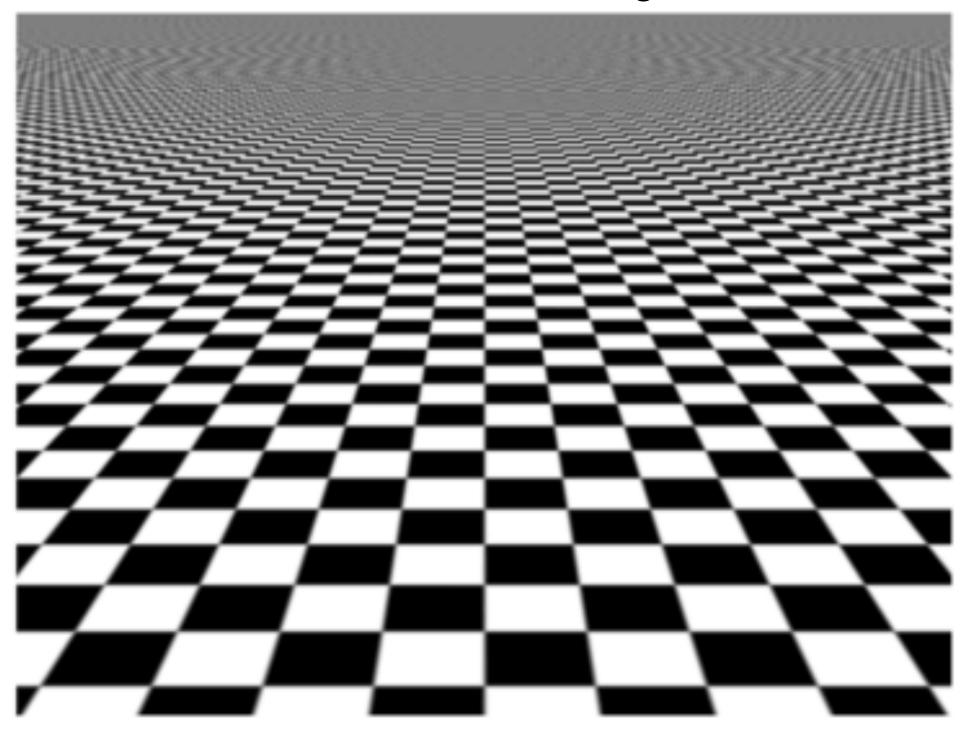
https://www.youtube.com/watch?v=B8EMI3_0TO0

59 Source: S. Seitz

Recouvrement spectral en infographie

60

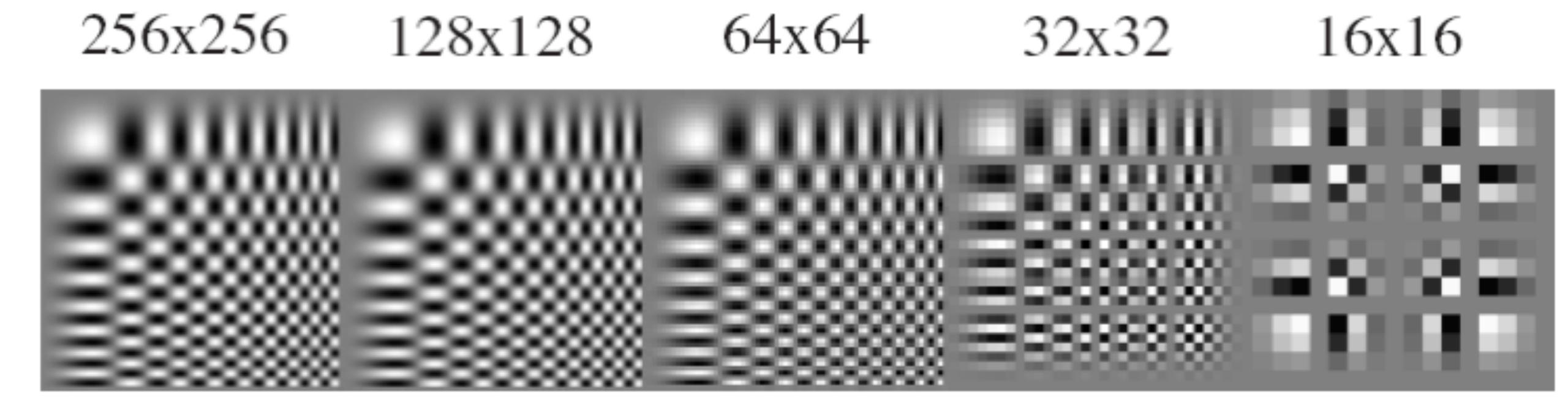




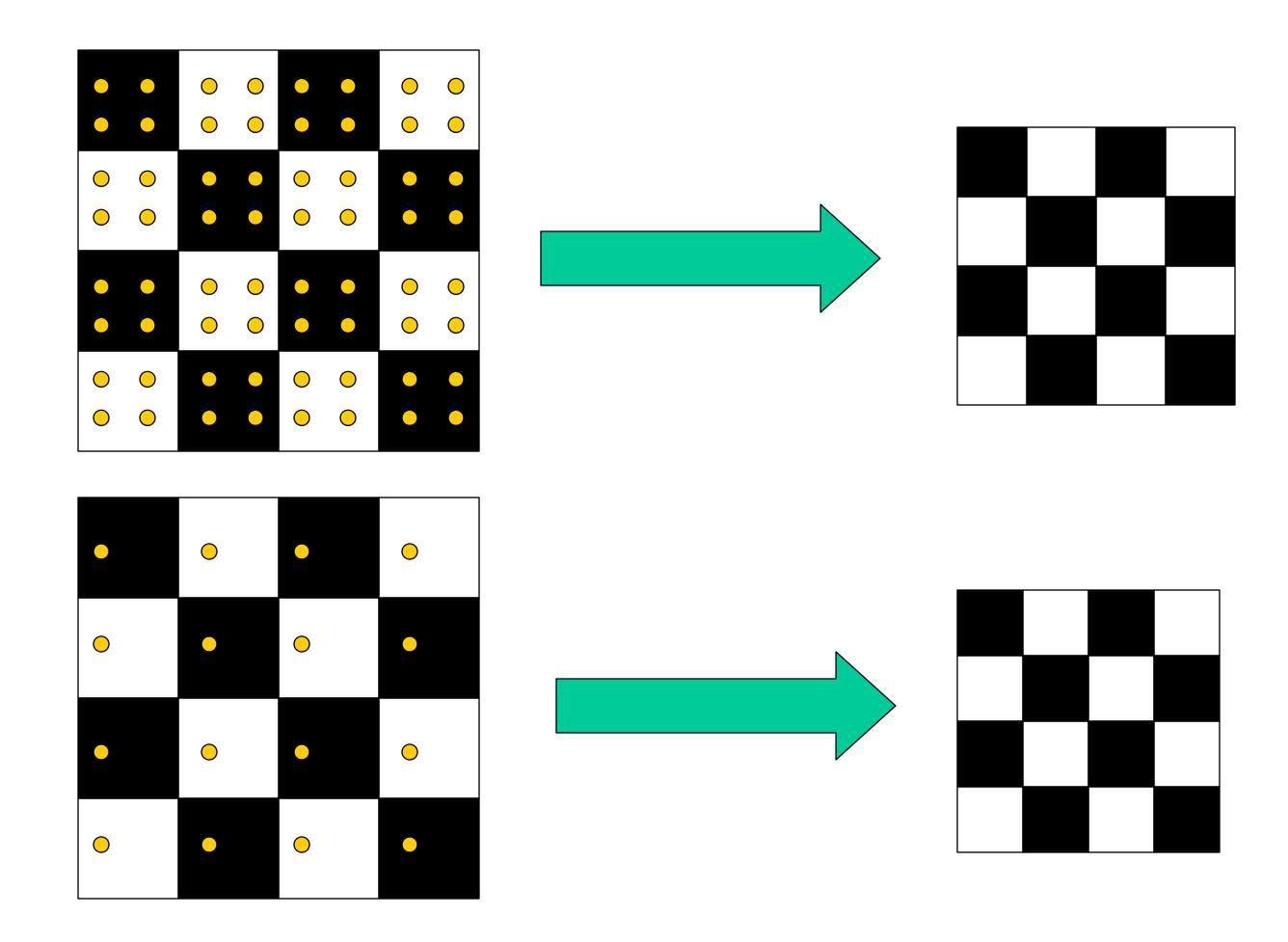
Source : <u>imgtec</u>

Pourquoi les présentateurs de nouvelles n'ont jamais de chemise rayées?

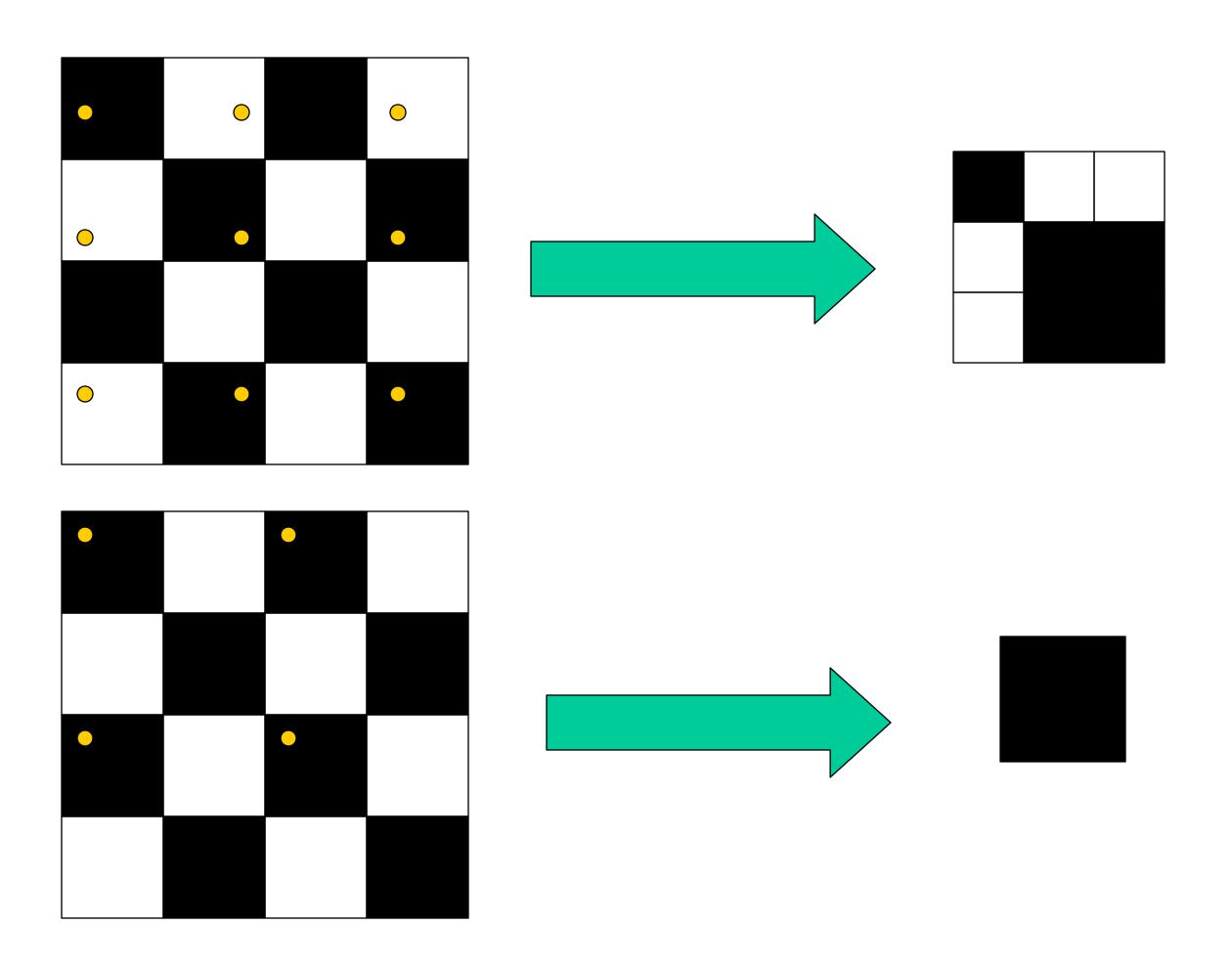
http://www.youtube.com/watch?v=jXEgnRWRJfg



Bon échantillonnage



Mauvais échantillonnage = recouvrement!



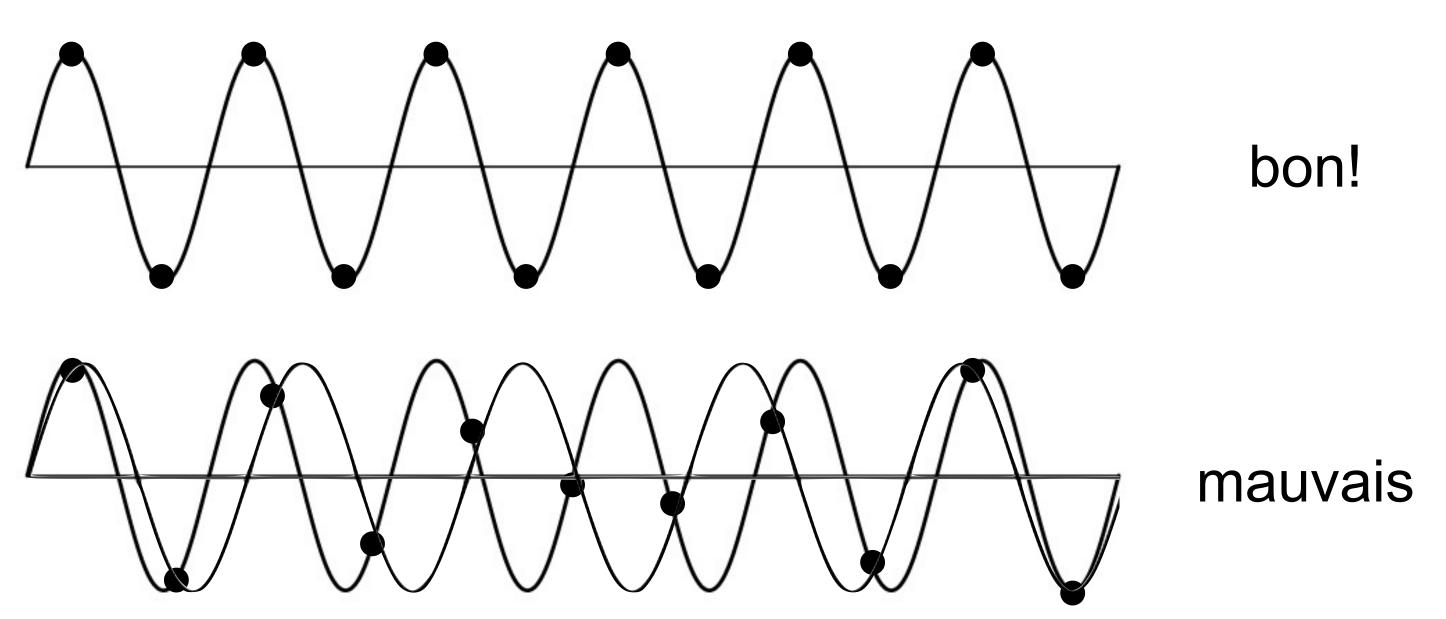
Théorème d'échantillonnage Nyquist-Shannon

- La fréquence d'échantillonnage d'un signal devrait être $\geq 2 \times f_{\text{max}}$
 - f_{max} = fréquence maximale du signal

$$f_{\rm e} \geq 2 f_{\rm max}$$

• Cette condition respectée garantit la reconstruction du signal

original

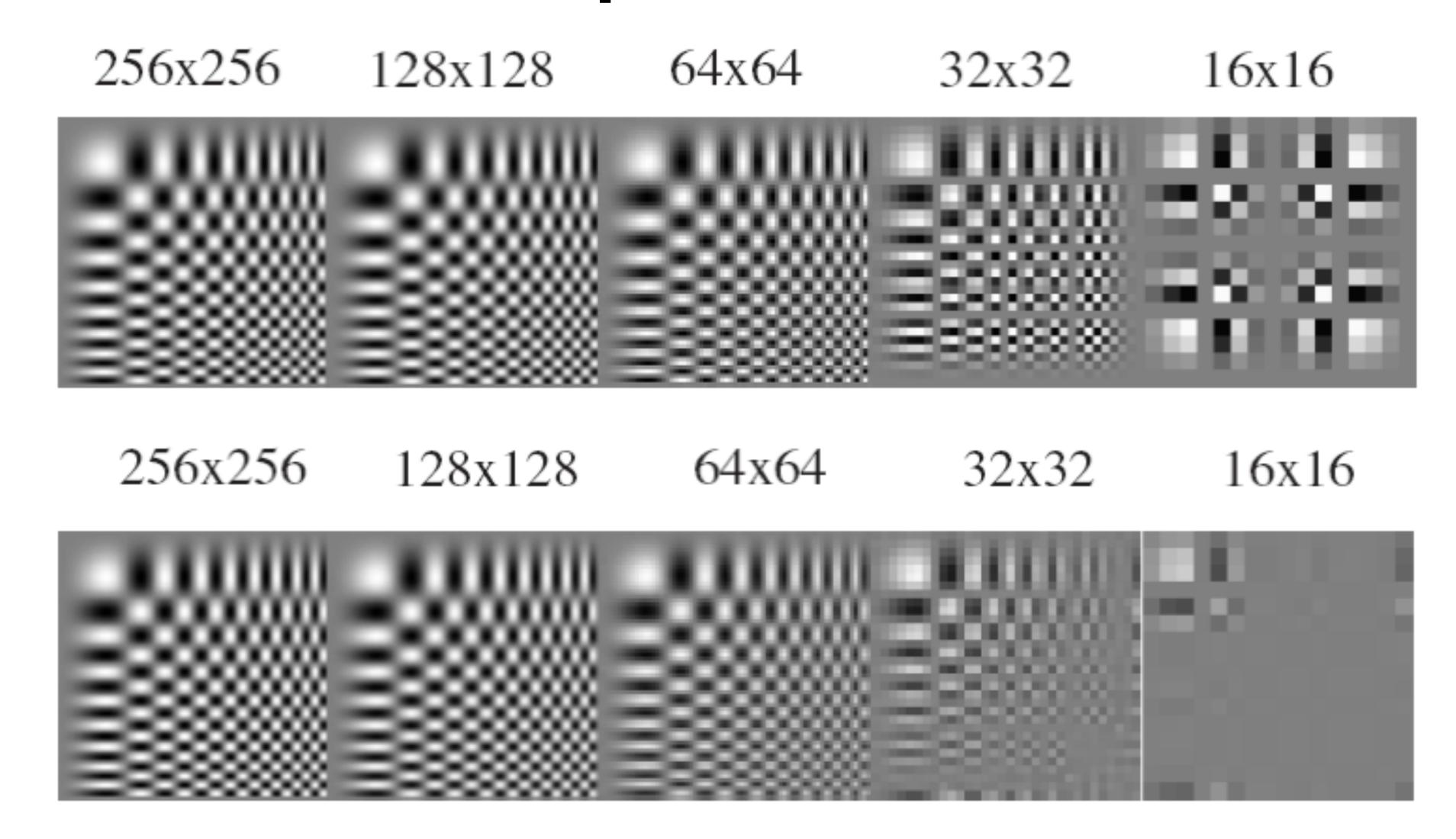


Anti-recouvrement (anti-aliasing)

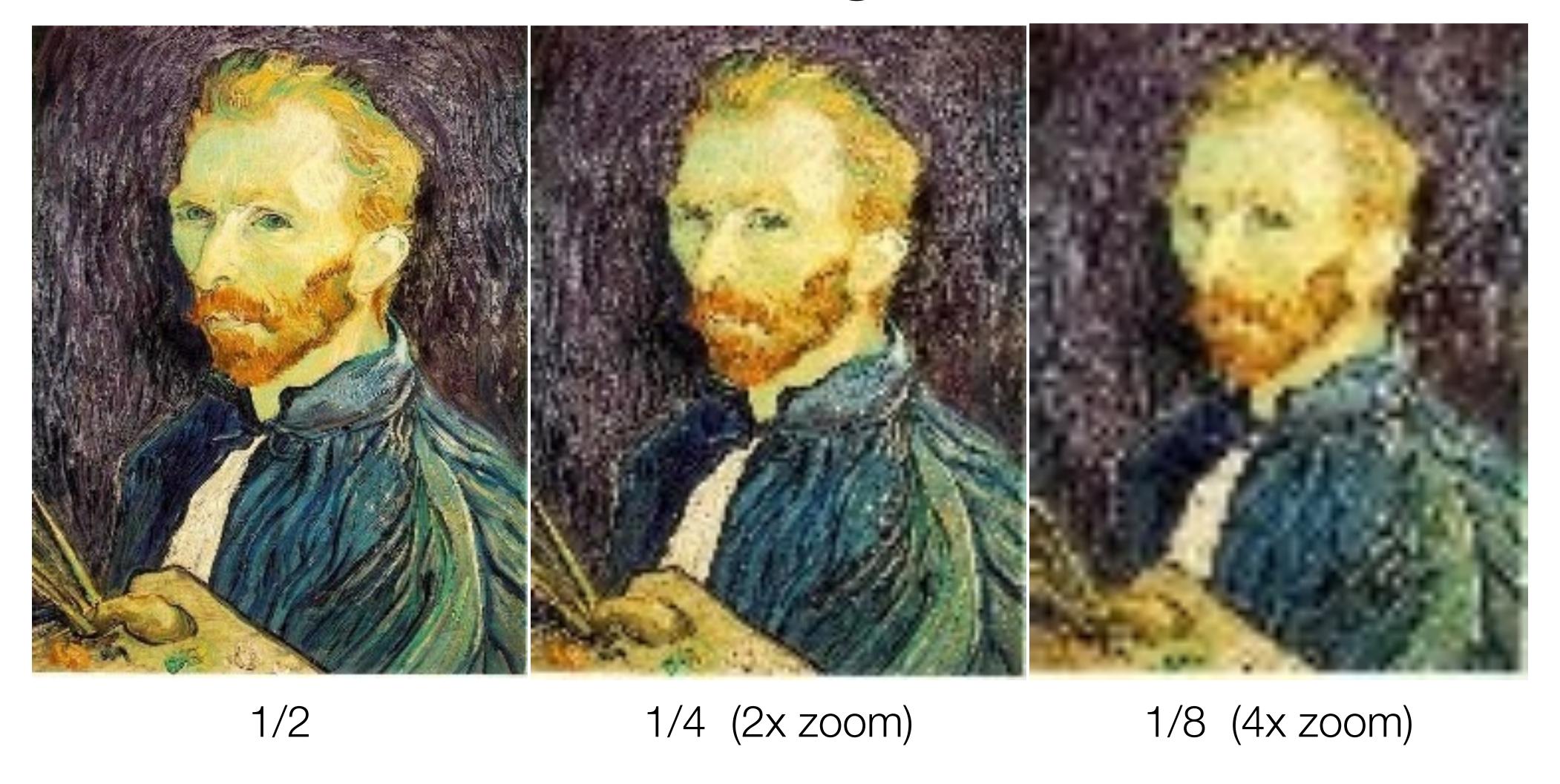
$$f_{\rm e} \geq 2 f_{\rm max}$$

- 2 solutions:
 - 1. Augmenter la fréquence d'échantillonnage!
 - 2. Réduire les fréquences qui sont plus grandes que la moitié de la fréquence d'échantillonnage
 - Perte d'information
 - Mieux que le recouvrement spectral!

Recouvrement spectral



Échantillonner sans filtrage



68

Credit: Steve Seitz

Échantillonner avec filtrage

69

Credit: Steve Seitz

Pourquoi une image à plus faible résolution est toujours compréhensible? Quelle est l'information perdue?

